Spelling suggestions: "subject:"computer network, protocol"" "subject:"coomputer network, protocol""
101 |
Defending against low-rate TCP attack: dynamic detection and protection.January 2005 (has links)
Sun Haibin. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 89-96). / Abstracts in English and Chinese. / Abstract --- p.i / Chinese Abstract --- p.iii / Acknowledgement --- p.iv / Chapter 1 --- Introduction --- p.1 / Chapter 2 --- Background Study and Related Work --- p.5 / Chapter 2.1 --- Victim Exhaustion DoS/DDoS Attacks --- p.6 / Chapter 2.1.1 --- Direct DoS/DDoS Attacks --- p.7 / Chapter 2.1.2 --- Reflector DoS/DDoS Attacks --- p.8 / Chapter 2.1.3 --- Spoofed Packet Filtering --- p.9 / Chapter 2.1.4 --- IP Traceback --- p.13 / Chapter 2.1.5 --- Location Hiding --- p.20 / Chapter 2.2 --- QoS Based DoS Attacks --- p.22 / Chapter 2.2.1 --- Introduction to the QoS Based DoS Attacks --- p.22 / Chapter 2.2.2 --- Countermeasures to the QoS Based DoS Attacks --- p.22 / Chapter 2.3 --- Worm based DoS Attacks --- p.24 / Chapter 2.3.1 --- Introduction to the Worm based DoS Attacks --- p.24 / Chapter 2.3.2 --- Countermeasures to the Worm Based DoS Attacks --- p.24 / Chapter 2.4 --- Low-rate TCP Attack and RoQ Attacks --- p.26 / Chapter 2.4.1 --- General Introduction of Low-rate Attack --- p.26 / Chapter 2.4.2 --- Introduction of RoQ Attack --- p.27 / Chapter 3 --- Formal Description of Low-rate TCP Attacks --- p.28 / Chapter 3.1 --- Mathematical Model of Low-rate TCP Attacks --- p.28 / Chapter 3 2 --- Other forms of Low-rate TCP Attacks --- p.31 / Chapter 4 --- Distributed Detection Mechanism --- p.34 / Chapter 4.1 --- General Consideration of Distributed Detection . --- p.34 / Chapter 4.2 --- Design of Low-rate Attack Detection Algorithm . --- p.36 / Chapter 4.3 --- Statistical Sampling of Incoming Traffic --- p.37 / Chapter 4.4 --- Noise Filtering --- p.38 / Chapter 4.5 --- Feature Extraction --- p.39 / Chapter 4.6 --- Pattern Matching via the Dynamic Time Warping (DTW) Method --- p.41 / Chapter 4.7 --- Robustness and Accuracy of DTW --- p.45 / Chapter 4.7.1 --- DTW values for low-rate attack: --- p.46 / Chapter 4.7.2 --- DTW values for legitimate traffic (Gaussian): --- p.47 / Chapter 4.7.3 --- DTW values for legitimate traffic (Self-similar): --- p.48 / Chapter 5 --- Low-Rate Attack Defense Mechanism --- p.52 / Chapter 5.1 --- Design of Defense Mechanism --- p.52 / Chapter 5.2 --- Analysis of Deficit Round Robin Algorithm --- p.54 / Chapter 6 --- Fluid Model of TCP Flows --- p.56 / Chapter 6.1 --- Fluid Math. Model of TCP under DRR --- p.56 / Chapter 6.1.1 --- Model of TCP on a Droptail Router --- p.56 / Chapter 6.1.2 --- Model of TCP on a DRR Router --- p.60 / Chapter 6.2 --- Simulation of TCP Fluid Model --- p.62 / Chapter 6.2.1 --- Simulation of Attack with Single TCP Flow --- p.62 / Chapter 6.2.2 --- Simulation of Attack with Multiple TCP flows --- p.64 / Chapter 7 --- Experiments --- p.69 / Chapter 7.1 --- Experiment 1 (Single TCP flow vs. single source attack) --- p.69 / Chapter 7.2 --- Experiment 2 (Multiple TCP flows vs. single source attack) --- p.72 / Chapter 7.3 --- Experiment 3 (Multiple TCP flows vs. synchro- nized distributed low-rate attack) --- p.74 / Chapter 7.4 --- Experiment 4 (Network model of low-rate attack vs. Multiple TCP flows) --- p.77 / Chapter 8 --- Conclusion --- p.83 / Chapter A --- Lemmas and Theorem Derivation --- p.85 / Bibliography --- p.89
|
102 |
Transport layer optimization for mobile data networks.January 2010 (has links)
Wan, Wing San. / "September 2010." / Thesis (M.Phil.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (p. 53-55). / Abstracts in English and Chinese. / Acknowledgements --- p.ii / Abstract --- p.iii / 摘要 --- p.iv / Contents --- p.v / Chapter Chapter 1 --- INTRODUCTION --- p.1 / Chapter Chapter 2 --- BACKGROUND AND RELATED WORK --- p.4 / Chapter 2.1 --- Sender-receiver-based approaches --- p.4 / Chapter 2.2 --- Sender-based approaches --- p.5 / Chapter 2.3 --- Receiver-based approaches --- p.6 / Chapter Chapter 3 --- TCP FLOW CONTROL REVISITED --- p.8 / Chapter Chapter 4 --- OPPORTUNISTIC TRANSMISSION --- p.12 / Chapter 4.1 --- Link bandwidth estimation --- p.16 / Chapter 4.2 --- Reception rate estimation --- p.18 / Chapter 4.3 --- Transmission scheduling --- p.19 / Chapter 4.4 --- Performance --- p.21 / Chapter Chapter 5 --- Local Retransmission --- p.23 / Chapter 5.1 --- The blackout period --- p.24 / Chapter 5.2 --- Proactive retransmission --- p.28 / Chapter 5.3 --- Performance --- p.30 / Chapter Chapter 6 --- Loss Event Suppression --- p.31 / Chapter 6.1 --- RTT modulation --- p.32 / Chapter 6.2 --- Performance --- p.35 / Chapter Chapter 7 --- Fairness --- p.37 / Chapter 7.1 --- Packet forwarding --- p.37 / Chapter 7.2 --- Non-uniform bandwidth allocation --- p.41 / Chapter Chapter 8 --- EXPERIMENTS --- p.43 / Chapter 8.1 --- Experiment setup --- p.43 / Chapter 8.2 --- Packet loss --- p.44 / Chapter 8.3 --- Unaccelerated TCP throughput --- p.45 / Chapter 8.4 --- Accelerated TCP throughput --- p.46 / Chapter 8.5 --- Fairness --- p.47 / Chapter 8.6 --- Mobile handset performance --- p.47 / Chapter Chapter 9 --- FUTURE WORK --- p.49 / Chapter 9.1 --- Dynamic AWnd control --- p.49 / Chapter 9.2 --- Split-TCP --- p.50 / Chapter 9.3 --- Dynamic resource allocation --- p.50 / Chapter 9.4 --- Sender-based acceleration --- p.51 / Chapter Chapter 10 --- CONCLUSION --- p.52 / BIBLIOGRAPHY --- p.53
|
103 |
A study of the effects of TCP designs on server efficiency and throughputs on wired and wireless networks.January 2003 (has links)
Yeung, Fei-Fei. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (leaves 144-146). / Abstracts in English and Chinese. / Introduction --- p.1 / Chapter Part I: --- A New Socket API for Enhancing Server Efficiency --- p.5 / Chapter Chapter 1 --- Introduction --- p.6 / Chapter 1.1 --- Brief Background --- p.6 / Chapter 1.2 --- Deficiencies of Nagle's Algorithm and Goals and Objectives of this Research --- p.7 / Chapter 1.2.1 --- Effectiveness of Nagle's Algorithm --- p.7 / Chapter 1.2.2 --- Preventing Small Packets via Application Layer --- p.9 / Chapter 1.2.3 --- Minimum Delay in TCP Buffer --- p.10 / Chapter 1.2.4 --- Maximum Delay in TCP Buffer --- p.11 / Chapter 1.2.5 --- New Socket API --- p.12 / Chapter 1.3 --- Scope of Research and Summary of Contributions --- p.12 / Chapter 1.4 --- Organization of Part 1 --- p.13 / Chapter Chapter 2 --- Background --- p.14 / Chapter 2.1 --- Review of Nagle's Algorithm --- p.14 / Chapter 2.2 --- Additional Problems Inherent in Nagle's Algorithm --- p.17 / Chapter 2.3 --- Previous Proposed Modifications on Nagle's Algorithm --- p.22 / Chapter 2.3.1 --- The Minshall Modification --- p.22 / Chapter 2.3.1.1 --- The Minshall Modification --- p.22 / Chapter 2.3.1.2 --- The Minshall et al. Modification --- p.23 / Chapter 2.3.2 --- The Borman Modification --- p.23 / Chapter 2.3.3 --- The Jeffrey et al. Modification --- p.25 / Chapter 2.3.3.1 --- The EOM and MORE Variants --- p.25 / Chapter 2.3.3.2 --- The DLDET Variant --- p.26 / Chapter 2.3.4 --- Comparison Between Our Proposal and Related Works --- p.26 / Chapter Chapter 3 --- Min-Delay-Max-Delay TCP Buffering --- p.28 / Chapter 3.1 --- Minimum Delay --- p.29 / Chapter 3.1.1 --- Why Enabling Nagle's Algorithm Alone is Not a Solution? --- p.29 / Chapter 3.1.2 --- Advantages of Min-Delay TCP-layer Buffering versus Application-layer Buffering --- p.30 / Chapter 3.2 --- Maximum Delay --- p.32 / Chapter 3.2.1 --- Why Enabling Nagle's Algorithm Alone is Not a Solution? --- p.32 / Chapter 3.2.2 --- Advantages of Max-delay TCP Buffering versus Nagle's Algorithm --- p.33 / Chapter 3.3 --- Interaction with Nagle's Algorithm --- p.34 / Chapter 3.4 --- When to Apply Our Proposed Scheme? --- p.36 / Chapter 3.5 --- New Socket Option Description --- p.38 / Chapter 3.6 --- Implementation --- p.40 / Chapter 3.6.1 --- Small Packet Transmission Decision Logic --- p.42 / Chapter 3.6.2 --- Modified API --- p.44 / Chapter Chapter 4 --- Experiments --- p.46 / Chapter 4.1 --- The Effect of Kernel Buffering Mechanism on the Service Time --- p.47 / Chapter 4.1.1 --- Aims and Methodology --- p.47 / Chapter 4.1.2 --- Comparison of Transmission Time Required --- p.49 / Chapter 4.2 --- Performance of Min-Delay-Max-Delay Scheme --- p.56 / Chapter 4.2.1 --- Methodology --- p.56 / Chapter 4.2.1.1 --- Network Setup --- p.56 / Chapter 4.2.1.2 --- Traffic Model --- p.58 / Chapter 4.2.1.3 --- Delay Measurement --- p.60 / Chapter 4.2.2 --- Efficiency of Busy Server --- p.62 / Chapter 4.2.2.1 --- Performance of Nagle's algorithm --- p.62 / Chapter 4.2.2.2 --- Performance of Min-Delay TCP Buffering Scheme --- p.67 / Chapter 4.2.3 --- Limiting Delay by Setting TCP´ؤMAXDELAY --- p.70 / Chapter 4.3 --- Performance Sensitivity Discussion --- p.77 / Chapter 4.3.1 --- Sensitivity to Data Size per Invocation of send() --- p.77 / Chapter 4.3.2 --- Sensitivity to Minimum Delay --- p.83 / Chapter 4.3.3 --- Sensitivity to Round Trip Time --- p.85 / Chapter Chapter 5 --- Conclusion --- p.88 / Chapter Part II: --- Two Analytical Models for a Refined TCP Algorithm (TCP Veno) for Wired/Wireless Networks --- p.91 / Chapter Chapter 1 --- Introduction --- p.92 / Chapter 1.1 --- Brief Background --- p.92 / Chapter 1.2 --- Motivation and Two Analytical Models --- p.95 / Chapter 1.3 --- Organization of Part II --- p.96 / Chapter Chapter 2 --- Background --- p.97 / Chapter 2.1 --- TCP Veno Algorithm --- p.97 / Chapter 2.1.1 --- Packet Loss Type Identification --- p.97 / Chapter 2.1.2 --- Refined AIMD Algorithm --- p.99 / Chapter 2.1.2.1 --- Random Loss Management --- p.99 / Chapter 2.1.2.2 --- Congestion Management --- p.100 / Chapter 2.2 --- A Simple Model of TCP Reno --- p.101 / Chapter 2.3 --- Stochastic Modeling of TCP Reno over Lossy Channels --- p.103 / Chapter Chapter 3 --- Two Analytical Models --- p.104 / Chapter 3.1 --- Simple Model --- p.104 / Chapter 3.1.1 --- Random-loss Only Case --- p.105 / Chapter 3.1.2 --- Congestion-loss Only Case --- p.108 / Chapter 3.1.3 --- The General Case (Random + Congestion Loss) --- p.110 / Chapter 3.2 --- Markov Model --- p.115 / Chapter 3.2.1 --- Congestion Window Evolution --- p.115 / Chapter 3.2.2 --- Average Throughput Formulating --- p.119 / Chapter 3.2.2.1 --- Random-loss Only Case --- p.120 / Chapter 3.2.2.2 --- Congestion-loss Only Case --- p.122 / Chapter 3.2.2.3 --- The General Case (Random + Congestion Loss) --- p.123 / Chapter Chapter 4 --- Comparison with Experimental Results and Discussions --- p.127 / Chapter 4.1 --- Throughput versus Random Loss Probability --- p.127 / Chapter 4.2 --- Throughput versus Normalized Buffer Size --- p.132 / Chapter 4.3 --- Throughput versus Bandwidth in Asymmetric Networks --- p.135 / Chapter 4.3 --- Summary --- p.136 / Chapter Chapter 5 --- Sensitivity of TCP Veno Throughput to Various Parameters --- p.137 / Chapter 5.1 --- Multiplicative Decrease Factor (α) --- p.137 / Chapter 5.2 --- Number of Backlogs (β) and Fractional Increase Factor (γ) --- p.139 / Chapter Chapter 6 --- Conclusions --- p.142 / Bibliography --- p.144
|
104 |
Design and analysis of multi-path routing.January 2003 (has links)
Ma Ke. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2003. / Includes bibliographical references (leaves 64-68). / Abstracts in English and Chinese. / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Background --- p.1 / Chapter 1.2 --- Motivation --- p.2 / Chapter 1.3 --- Contribution --- p.3 / Chapter 1.4 --- Organization --- p.4 / Chapter 2 --- Literature Review --- p.5 / Chapter 2.1 --- Overview --- p.5 / Chapter 2.2 --- Multi-Path Routing --- p.6 / Chapter 2.2.1 --- OSPF-ECMP --- p.7 / Chapter 2.2.2 --- LFI --- p.7 / Chapter 2.2.3 --- QSMP and QDMP --- p.9 / Chapter 2.2.4 --- WDP --- p.10 / Chapter 2.2.5 --- DMPR --- p.11 / Chapter 2.2.6 --- Cidon's Analysis --- p.13 / Chapter 3 --- LSLF and SLSLF Conditions --- p.15 / Chapter 3.1 --- Problem Formulation --- p.15 / Chapter 3.2 --- LFI Conditions --- p.16 / Chapter 3.3 --- LSLF Conditions --- p.17 / Chapter 3.4 --- SLSLF Conditions --- p.20 / Chapter 4 --- Performance of LSLF and SLSLF --- p.24 / Chapter 4.1 --- Overview --- p.24 / Chapter 4.2 --- Numerical Results --- p.26 / Chapter 5 --- Analysis of Multi-path Routing --- p.42 / Chapter 5.1 --- Assumptions --- p.43 / Chapter 5.2 --- M/M/C/C Queueing System --- p.44 / Chapter 5.3 --- Performance Analysis --- p.48 / Chapter 5.3.1 --- "Case 1 Only QoS flows between (s, d) exist" --- p.48 / Chapter 5.3.2 --- Case 2 QoS flows between other SD pairs also exist --- p.50 / Chapter 5.3.3 --- Case 3 A QoS flow can try m times before it is dropped --- p.53 / Chapter 5.4 --- Numerical Results --- p.56 / Chapter 6 --- Conclusion --- p.62
|
105 |
TFRC modeling and its applications. / TCP-friendly rate control modeling and its applications / Transmission control protocol-friendly rate control modeling and its applicationsJanuary 2009 (has links)
Chen, Liang. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (p. 87-91). / Abstract also in Chinese. / Abstract --- p.i / Acknowledgement --- p.iii / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Problem --- p.1 / Chapter 1.2 --- Motivation --- p.3 / Chapter 1.3 --- Thesis Contribution and Organization --- p.5 / Chapter 2 --- Background Study --- p.9 / Chapter 2.1 --- TFRC --- p.9 / Chapter 2.2 --- Related Work --- p.11 / Chapter 3 --- Network Modeling --- p.15 / Chapter 3.1 --- Network Utility Maximization Framework --- p.15 / Chapter 3.1.1 --- Primal Algorithm --- p.16 / Chapter 3.1.2 --- Dual Algorithm --- p.17 / Chapter 3.2 --- Overview of TCP Reno Modeling --- p.18 / Chapter 3.3 --- Modeling TFRC --- p.19 / Chapter 3.3.1 --- TFRC Model I --- p.20 / Chapter 3.3.2 --- TFRC Model II --- p.21 / Chapter 3.4 --- Modeling Coexistence Case --- p.23 / Chapter 4 --- Stability Analysis --- p.27 / Chapter 4.1 --- TFRC Network --- p.27 / Chapter 4.1.1 --- Global Stability --- p.28 / Chapter 4.1.2 --- Rate of Convergence --- p.32 / Chapter 4.1.3 --- Rate-adaptation Comparison --- p.36 / Chapter 4.2 --- TCP Reno and TFRC Coexistence Network --- p.40 / Chapter 4.2.1 --- Existence and Uniqueness of Equilibrium --- p.40 / Chapter 4.2.2 --- Stability Analysis of the Coexistence Case --- p.41 / Chapter 5 --- Delay Analysis --- p.45 / Chapter 5.1 --- TFRC Network Model I --- p.46 / Chapter 5.2 --- TFRC Network Model II --- p.51 / Chapter 5.3 --- Robustness Comparison of TCP and TFRC --- p.55 / Chapter 6 --- Simulation Results --- p.61 / Chapter 6.1 --- Matlab Simulations --- p.61 / Chapter 6.1.1 --- Smoothed Effects and Rate Convergence --- p.61 / Chapter 6.1.2 --- Rate-adaptation Comparison of Two Models --- p.64 / Chapter 6.1.3 --- Delay Instability --- p.65 / Chapter 6.2 --- NS2 Simulations --- p.69 / Chapter 6.2.1 --- Traffic Smoothness and Jitter Property --- p.70 / Chapter 6.2.2 --- Necessity of Adaptive Scheme --- p.73 / Chapter 7 --- Conclusion --- p.77 / Chapter A --- Appendix --- p.81 / Chapter A.l --- Delay Analysis for the Single Link Case of TFRC I --- p.81 / Chapter A.2 --- Delay Analysis for the Single Link Case of TFRC II --- p.84 / Bibliography --- p.87
|
106 |
TCP Reno over adaptive CSMA. / Transmission control protocol Reno over adaptive carrier sense multiple accessJanuary 2010 (has links)
Chen, Wei. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 64-67). / Abstracts in English and Chinese. / Dedication --- p.iv / Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Motivation --- p.1 / Chapter 1.2 --- Contributions --- p.2 / Chapter 1.3 --- Thesis Organization --- p.3 / Chapter 2 --- Related Work --- p.4 / Chapter 2.1 --- Previous Work on Rate Control and link Scheduling in Wireless Networks --- p.4 / Chapter 2.2 --- Previous Work on Multi-connection TCP --- p.6 / Chapter 2.3 --- Previous Work on AQM --- p.6 / Chapter 3 --- Problem Settings --- p.7 / Chapter 3.1 --- Network Modeling --- p.7 / Chapter 3.2 --- Capacity Region of Wireless Networks and Throughput-optimal Scheduling --- p.9 / Chapter 3.3 --- Throughput-optimality of A-CSMA --- p.10 / Chapter 3.4 --- TCP Reno Congestion Control Modeling --- p.11 / Chapter 4 --- Starvation of TCP Reno over L-CSMA and A-CSMA --- p.13 / Chapter 4.1 --- TCP Reno Starves over L-CSMA --- p.13 / Chapter 4.2 --- TCP Reno Starves over A-CSMA --- p.15 / Chapter 4.2.1 --- Simulations --- p.15 / Chapter 4.2.2 --- Observations and Explanations --- p.17 / Chapter 5 --- Analysis and Our Proposed Solution --- p.19 / Chapter 5.1 --- Proposed Solution: Multi-connection TCP Reno Scheme --- p.19 / Chapter 5.2 --- Implementation --- p.25 / Chapter 5.3 --- Discussion --- p.28 / Chapter 5.3.1 --- Achieve Arbitrary Utility --- p.28 / Chapter 5.3.2 --- Extension to Networks with Both Wired and Wireless Links --- p.28 / Chapter 5.3.3 --- Impact of ACK Traffic --- p.30 / Chapter 5.3.4 --- Tradeoff between performance and overhead --- p.31 / Chapter 5.3.5 --- Overhead of Multi-connection TCP --- p.32 / Chapter 6 --- Simulations --- p.37 / Chapter 6.1 --- Single-hop Wireless Networks Scenario --- p.38 / Chapter 6.1.1 --- Fairness and Throughput --- p.38 / Chapter 6.1.2 --- Impact of Measuring Queue Length in Number of Bytes for n-ACK --- p.42 / Chapter 6.1.3 --- Impact of Dummy Packets --- p.43 / Chapter 6.1.4 --- Impact of Product k2β --- p.45 / Chapter 6.1.5 --- Effects of Parameterβ --- p.47 / Chapter 6.1.6 --- Effects of Parameter k --- p.49 / Chapter 6.1.7 --- Overhead of n-ACK Solution --- p.50 / Chapter 6.2 --- Multihop Wireless Networks Scenario --- p.52 / Chapter 6.3 --- Multihop Networks with Wireless and Wired Links Scenario --- p.53 / Chapter 7 --- Conclusions and Future Work --- p.56 / Chapter 7.1 --- Conclusions --- p.56 / Chapter 7.2 --- Future Work --- p.57 / Chapter A --- Explanation to Starvation of TCP Reno over A-CSMA --- p.58 / Chapter B --- TCP Reno over A-CSMA with AQM --- p.60 / Chapter B.1 --- TCP Reno starves --- p.60 / Chapter B.2 --- Explanation --- p.61 / Bibliography --- p.64
|
107 |
RPX ??? a system for extending the IPv4 address rangeRattananon, Sanchai, Electrical Engineering & Telecommunications, Faculty of Engineering, UNSW January 2006 (has links)
In recent times, the imminent lack of public IPv4 addresses has attracted the attention of both the research community and industry. The cellular industry has decided to combat this problem by using IPv6 for all new terminals. However, the success of 3G network deployment will depend on the services offered to end users. Currently, almost all services reside in the IPv4 address space, making them inaccessible to users in IPv6 networks. Thus, an intermediate translation mechanism is required. Previous studies on network address translation methods have shown that Realm Base Kluge Address Heuristic-IP, REBEKAH-IP supports all types of services that can be offered to IPv6 hosts from the public IPv4 based Internet, and provides excellent scalability. However, the method suffers from an ambiguity problem which may lead to call blocking. This thesis presents an improvement to REBEKAH-IP scheme in which the side effect is removed, creating a robust and fully scalable system. The improvement can be divided into two major tasks including a full investigation on the scalability of addressing and improvements to the REBEKAH-IP scheme that allow it to support important features such as ICMP and IP mobility. To address the first task a method called REBEKAH-IP with Port Extension (RPX) is introduced. RPX is extended from the original REBEKAH-IP scheme to incorporate centralised management of both IP address and port numbers. This method overcomes the ambiguity problem, and improves scalability. We propose a priority queue algorithm to further increase scalability. Finally, we present extensive simulation results on the practical scalability of RPX with different traffic compositions, to provide a guideline of the expected scalability in large-scale networks. The second task concerns enabling IP based communication. Firstly, we propose an ICMP translation mechanism which allows the RPX server to support important end-toend control functions. Secondly, we extend the RPX scheme with a mobility support scheme based on Mobile IP. In addition, we have augmented Mobile IP with a new tunneling mechanism called IP-in-FQDN tunneling. The mechanism allows for unique mapping despite the sharing of IP addresses while maintaining the scalability of RPX. We examine the viability of our design through our experimental implementation.
|
108 |
A controller for internet protocol routing of AX.25 packetsReinalda, Johannes K. 20 May 1991 (has links)
Amateur Packet Radio Networking presently uses the NET/ROM
protocol to establish the network. NET/ROM is considered to be
insufficient to support the expected growth of the network. This
research work proposes to use the TCP/IP protocol suite instead to
build the network. A comparison between features of both protocols
supports this proposal.
A new and simple hardware platform is introduced. This will
provide adequate support for initial experiments. Design
considerations for both hardware architecture and software
architecture are discussed in detail. Implementation of the IP protocol
used for routing is discussed. / Graduation date: 1992
|
109 |
Transport Layer Optimizations for Heterogeneous Wireless Multimedia NetworksArgyriou, Antonios D. 22 August 2005 (has links)
The explosive growth of the Internet during the last few years, has been propelled by the TCP/IP protocol suite and the best effort packet forwarding service. However, quality of service (QoS) is far from being a reality especially for multimedia services like video streaming and video conferencing. In the case of wireless and mobile networks, the problem becomes even worse due to the physics of the medium, resulting into further deterioration of the system performance.
Goal of this dissertation is the systematic development of comprehensive models that jointly characterize the performance of transport protocols and media delivery in heterogeneous wireless networks. At the core of our novel methodology, is the use of analytical models for driving the design of media transport algorithms, so that the delivery of conversational and non-interactive multimedia data is enhanced in terms of throughput, delay, and jitter. More speciffically, we develop analytical models that characterize the throughput and goodput of the transmission control protocol (TCP) and the transmission friendly rate control (TFRC) protocol, when CBR and VBR multimedia workloads are considered. Subsequently, we enhance the transport protocol models with new parameters that capture the playback buffer performance and the expected video distortion at the receiver. In this way a complete end-to-end model for media streaming is obtained. This model is used as a basis for a new algorithm for rate-distortion optimized mode selection in video streaming appli-
cations. As a next step, we extend the developed models for the aforementioned protocols, so that heterogeneous wireless networks can be accommodated. Subsequently, new algorithms are proposed in order to enhance the developed media streaming algorithms when heterogeneous wireless networks are also included. Finally, the aforementioned models and algorithms are extended for the case of concurrent multipath media transport over several hybrid wired/wireless links.
|
110 |
Performance evaluation of high performance parallel I/ODhandapani, Mangayarkarasi. January 2003 (has links) (PDF)
Thesis (M.S.)--Mississippi State University. Department of Computer Science and Engineering. / Title from title screen. Includes bibliographical references.
|
Page generated in 0.0953 seconds