• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Understanding and applying practitioner and patient views on the implementation of a novel automated Computer-Aided Risk Score (CARS) predicting the risk of death following emergency medical admission to hospital: qualitative study

Dyson, J., Marsh, C., Jackson, N., Richardson, D., Faisal, Muhammad, Scally, Andy J., Mohammad, Mohammad A. 11 March 2019 (has links)
Yes / Objectives The Computer-Aided Risk Score (CARS) estimates the risk of death following emergency admission to medical wards using routinely collected vital signs and blood test data. Our aim was to elicit the views of healthcare practitioners (staff) and service users and carers (SU/C) on (1) the potential value, unintended consequences and concerns associated with CARS and practitioner views on (2) the issues to consider before embedding CARS into routine practice. Setting This study was conducted in two National Health Service (NHS) hospital trusts in the North of England. Both had in-house information technology (IT) development teams, mature IT infrastructure with electronic National Early Warning Score (NEWS) and were capable of integrating NEWS with blood test results. The study focused on emergency medical and elderly admissions units. There were 60 and 39 acute medical/elderly admissions beds at the two NHS hospital trusts. Participants We conducted eight focus groups with 45 healthcare practitioners and two with 11 SU/Cs in two NHS acute hospitals. Results Staff and SU/Cs recognised the potential of CARS but were clear that the score should not replace or undermine clinical judgments. Staff recognised that CARS could enhance clinical decision-making/judgments and aid communication with patients. They wanted to understand the components of CARS and be reassured about its accuracy but were concerned about the impact on intensive care and blood tests. Conclusion Risk scores are widely used in healthcare, but their development and implementation do not usually involve input from practitioners and SU/Cs. We contributed to the development of CARS by eliciting views of staff and SU/Cs who provided important, often complex, insights to support the development and implementation of CARS to ensure successful implementation in routine clinical practice. / Health Foundation, National Institute for Health Research (NIHR) Yorkshire and Humber Patient Safety Translational Research Centre (NIHR Yorkshire and Humber PSTRC)
2

A prospective study of consecutive emergency medical admissions to compare a novel automated computer-aided mortality risk score and clinical judgement of patient mortality risk

Faisal, Muhammad, Khatoon, Binish, Scally, Andy J., Richardson, D., Irwin, S., Davidson, R., Heseltine, D., Corlett, A., Ali, J., Hampson, R., Kesavan, S., McGonigal, G., Goodman, K., Harkness, M., Mohammed, Mohammed A. 25 August 2020 (has links)
Yes / Objectives: To compare the performance of a validated automatic computer-aided risk of mortality (CARM) score versus medical judgement in predicting the risk of in-hospital mortality for patients following emergency medical admission. Design: A prospective study. Setting: Consecutive emergency medical admissions in York hospital. Participants: Elderly medical admissions in one ward were assigned a risk of death at the first post-take ward round by consultant staff over a 2-week period. The consultant medical staff used the same variables to assign a risk of death to the patient as the CARM (age, sex, National Early Warning Score and blood test results) but also had access to the clinical history, examination findings and any immediately available investigations such as ECGs. The performance of the CARM versus consultant medical judgement was compared using the c-statistic and the positive predictive value (PPV). Results: The in-hospital mortality was 31.8% (130/409). For patients with complete blood test results, the c-statistic for CARM was 0.75 (95% CI: 0.69 to 0.81) versus 0.72 (95% CI: 0.66 to 0.78) for medical judgements (p=0.28). For patients with at least one missing blood test result, the c-statistics were similar (medical judgements 0.70 (95% CI: 0.60 to 0.81) vs CARM 0.70 (95% CI: 0.59 to 0.80)). At a 10% mortality risk, the PPV for CARM was higher than medical judgements in patients with complete blood test results, 62.0% (95% CI: 51.2 to 71.9) versus 49.2% (95% CI: 39.8 to 58.5) but not when blood test results were missing, 50.0% (95% CI: 24.7 to 75.3) versus 53.3% (95% CI: 34.3 to 71.7). Conclusions: CARM is comparable with medical judgements in discriminating in-hospital mortality following emergency admission to an elderly care ward. CARM may have a promising role in supporting medical judgements in determining the patient's risk of death in hospital. Further evaluation of CARM in routine practice is required. / Supported by the Health Foundation, National Institute for Health Research (NIHR) Yorkshire and Humberside Patient Safety Translational Research Centre (NIHR YHPSTRC).
3

Development and external validation of an automated computer-aided risk score for predicting sepsis in emergency medical admissions using the patient's first electronically recorded vital signs and blood test results

Faisal, Muhammad, Scally, Andy J., Richardson, D., Beatson, K., Howes, R., Speed, K., Mohammed, Mohammed A. 24 January 2018 (has links)
Yes / Objectives: To develop a logistic regression model to predict the risk of sepsis following emergency medical admission using the patient’s first, routinely collected, electronically recorded vital signs and blood test results and to validate this novel computer-aided risk of sepsis model, using data from another hospital. Design: Cross-sectional model development and external validation study reporting the C-statistic based on a validated optimized algorithm to identify sepsis and severe sepsis (including septic shock) from administrative hospital databases using International Classification of Diseases, 10th Edition, codes. Setting: Two acute hospitals (York Hospital - development data; Northern Lincolnshire and Goole Hospital - external validation data). Patients: Adult emergency medical admissions discharged over a 24-month period with vital signs and blood test results recorded at admission. Interventions: None. Main Results: The prevalence of sepsis and severe sepsis was lower in York Hospital (18.5% = 4,861/2,6247; 5.3% = 1,387/2,6247) than Northern Lincolnshire and Goole Hospital (25.1% = 7,773/30,996; 9.2% = 2,864/30,996). The mortality for sepsis (York Hospital: 14.5% = 704/4,861; Northern Lincolnshire and Goole Hospital: 11.6% = 899/7,773) was lower than the mortality for severe sepsis (York Hospital: 29.0% = 402/1,387; Northern Lincolnshire and Goole Hospital: 21.4% = 612/2,864). The C-statistic for computer-aided risk of sepsis in York Hospital (all sepsis 0.78; sepsis: 0.73; severe sepsis: 0.80) was similar in an external hospital setting (Northern Lincolnshire and Goole Hospital: all sepsis 0.79; sepsis: 0.70; severe sepsis: 0.81). A cutoff value of 0.2 gives reasonable performance. Conclusions: We have developed a novel, externally validated computer-aided risk of sepsis, with reasonably good performance for estimating the risk of sepsis for emergency medical admissions using the patient’s first, electronically recorded, vital signs and blood tests results. Since computer-aided risk of sepsis places no additional data collection burden on clinicians and is automated, it may now be carefully introduced and evaluated in hospitals with sufficient informatics infrastructure. / Health Foundation

Page generated in 0.0609 seconds