• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Free-space optical interconnection of digital electronics

Baillie, Douglas Alexander January 1996 (has links)
No description available.
2

ADACORE: Achieving Energy Efficiency via Adaptive Core Morphing at Runtime

Kurella, Nithesh 23 November 2015 (has links)
Heterogeneous multicore processors offer an energy-efficient alternative to homogeneous multicores. Typically, heterogeneous multi-core refers to a system with more than one core where all the cores use a single ISA but differ in one or more micro-architectural configurations. A carefully designed multicore system consists of cores of diverse power and performance profiles. During execution, an application is run on a core that offers the best trade-off between performance and energy-efficiency. Since the resource needs of an application may vary with time, so does the optimal core choice. Moving a thread from one core to another involves transferring the entire processor state and cache warm-up. Frequent migration leads to large performance overhead, negating any benefits of migration. Infrequent migration on the other hand leads to missed opportunities. Thus, reducing overhead of migration is integral to harnessing benefits of heterogeneous multicores. \par This work proposes \textit{AdaCore}, a novel core architecture which pushes the heterogeneity exploited in the heterogeneous multicore into a single core. \textit{AdaCore} primarily addresses the resource bottlenecks in workloads. The design attempts to adaptively match the resource demands by reconfiguring on-chip resources at a fine-grain granularity. The adaptive core morphing allows core configurations with diverse power and performance profiles within a single core by adaptive voltage, frequency and resource reconfiguration. Towards this end, the proposed novel architecture while providing energy savings, improves performance with a low overhead in-core reconfiguration. This thesis further compares \textit{AdaCore} with a standard Out-of-Order core with capability to perform Dynamic Voltage and Frequency Scaling (DVFS) designed to achieve energy efficiency. The results presented in this thesis indicate that the proposed scheme can improve the performance/Watt of application, on average, by 32\% over a static out-of-order core and by 14\% over DVFS. The proposed scheme improves $IPS^{2}/Watt$ by 38\% over static out-of-order core.
3

Evolving Nano-scale Associative Memories with Memristors

Sinha, Arpita 01 January 2011 (has links)
Associative Memories (AMs) are essential building blocks for brain-like intelligent computing with applications in artificial vision, speech recognition, artificial intelligence, and robotics. Computations for such applications typically rely on spatial and temporal associations in the input patterns and need to be robust against noise and incomplete patterns. The conventional method for implementing AMs is through Artificial Neural Networks (ANNs). Improving the density of ANN based on conventional circuit elements poses a challenge as devices reach their physical scalability limits. Furthermore, stored information in AMs is vulnerable to destructive input signals. Novel nano-scale components, such as memristors, represent one solution to the density problem. Memristors are non-linear time-dependent circuit elements with an inherently small form factor. However, novel neuromorphic circuits typically use memristors to replace synapses in conventional ANN circuits. This sub-optimal use is primarily because there is no established design methodology to exploit the memristor's non-linear properties in a more encompassing way. The objective of this thesis is to explore denser and more robust AM designs using memristor networks. We hypothesize that such network AMs will be more area-efficient than the traditional ANN designs if we can use the memristor's non-linear property for spatial and time-dependent temporal association. We have built a comprehensive simulation framework that employs Genetic Programming (GP) to evolve AM circuits with memristors. The framework is based on the ParadisEO metaheuristics API and uses ngspice for the circuit evaluation. Our results show that we can evolve efficient memristor-based networks that have the potential to replace conventional ANNs used for AMs. We obtained AMs that a) can learn spatial and temporal correlation in the input patterns; b) optimize the trade-off between the size and the accuracy of the circuits; and c) are robust against destructive noise in the inputs. This robustness was achieved at the expense of additional components in the network. We have shown that automated circuit discovery is a promising tool for memristor-based circuits. Future work will focus on evolving circuits that can be used as a building block for more complicated intelligent computing architectures.
4

Service quality and profit control in utility computing service life cycles

Heckmann, Benjamin January 2013 (has links)
Utility Computing is one of the most discussed business models in the context of Cloud Computing. Service providers are more and more pushed into the role of utilities by their customer's expectations. Subsequently, the demand for predictable service availability and pay-per-use pricing models increases. Furthermore, for providers, a new opportunity to optimise resource usage offers arises, resulting from new virtualisation techniques. In this context, the control of service quality and profit depends on a deep understanding of the representation of the relationship between business and technique. This research analyses the relationship between the business model of Utility Computing and Service-oriented Computing architectures hosted in Cloud environments. The relations are clarified in detail for the entire service life cycle and throughout all architectural layers. Based on the elaborated relations, an approach to a delivery framework is evolved, in order to enable the optimisation of the relation attributes, while the service implementation passes through business planning, development, and operations. Related work from academic literature does not cover the collected requirements on service offers in this context. This finding is revealed by a critical review of approaches in the fields of Cloud Computing, Grid Computing, and Application Clusters. The related work is analysed regarding appropriate provision architectures and quality assurance approaches. The main concepts of the delivery framework are evaluated based on a simulation model. To demonstrate the ability of the framework to model complex pay-per-use service cascades in Cloud environments, several experiments have been conducted. First outcomes proof that the contributions of this research undoubtedly enable the optimisation of service quality and profit in Cloud-based Service-oriented Computing architectures.

Page generated in 0.0759 seconds