Spelling suggestions: "subject:"concave function"" "subject:"oncave function""
1 |
Dimensão generalizada de Hausdorff /Serantola, Leonardo Pereira January 2019 (has links)
Orientador: Márcio Ricardo Alves Gouveia / Resumo: O presente trabalho trata de conceitos relacionados com a medida generalizada de Hausdorff, onde o principal objetivo consiste na obtenção de conjuntos cuja dimensão seja um número positivo não inteiro. Ele começa com uma definição sobre as propriedades que uma função de conjunto deve satisfazer para ser considerada uma medida de Carathéodory, suas implicações e consequências. Após a explicação destes conceitos iniciais, dá-se alguns exemplos de funções de conjunto contínuas e monótonas com a apresentação da função de escala logarítmica, que é peça chave para o desenvolvimento de conjuntos de medidas positivas não inteiras, além da introdução da medida de Hausdorff com seus desdobramentos. Algumas hipóteses sobre funções côncavas são apresentadas juntamente com fórmulas deduzidas com bases nestas hipóteses e na concavidade da função. Utiliza-se a função de escala logarítima para a determinação da dimensão de vários conjuntos, inclusive o conjunto de Cantor. Posteriormente, há uma adaptação dos conceitos trabalhados para o tratamento de dimensões relacionadas à números diádicos irracionais. Por fim, os conceitos tratados sobre a reta real são estendidos para produtos cartesianos, com especial enfoque para conjuntos planares. / Abstract: The present work deals with concepts related to the generalized Hausdorff measure, where the main objective is to obtain sets whose dimension is a positive non integer number. It begins with a definition of the properties that a set function must satisfy to be considered a Carathéodory measure, their implications and consequences. Following the explanation of these initial concepts, some examples of continuous and monotonous set functions are given with the presentation of the logarithmic scale function, which is key to the development of non-integer positive measure sets, in addition to the introduction of the Hausdorff measure with its developments. Some assumptions about concave functions are presented together with formulas derived from these assumptions and the concavity of the function. The logarithmic scale function is used to determine the dimension of various sets, including the Cantor set. Later, there is an adaptation of the concepts worked for the treatment of dimensions related to irrational dyadic numbers. Finally, the concepts treated on the real line are extended to Cartesian products, with special focus on planar sets. / Mestre
|
2 |
Jensen Inequality, Muirhead Inequality and Majorization InequalityChen, Bo-Yu 06 July 2010 (has links)
Chapter 1 introduces Jensen Inequality and its geometric interpretation. Some useful criteria for checking the convexity of functions are discussed. Many applications in various fields are also included.
Chapter 2 deals with Schur Inequality, which can easily solve some problems involved symmetric inequality in three variables. The relationship between Schur Inequality and the roots and the coefficients of a cubic equation is also investigated.
Chapter 3 presents Muirhead Inequality which is derived from the concept of majorization. It generalizes the inequality of arithmetic and geometric means.
The equivalence of majorization and Muirhead¡¦s condition is illustrated. Two useful tricks for applying Muirhead Inequality are provided.
Chapter 4 handles Majorization Inequality which involves Majorization and Schur convexity, two of the most productive concepts in the theory of inequalities.
Its applications in elementary symmetric functions, sample variance, entropy and birthday problem are considered.
|
Page generated in 0.0521 seconds