• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A New Characterization Technique to Analyze Concentrator Photovoltaic Optical System Performance

Mcvey White, Patrick January 2017 (has links)
Concentrator photovoltaics is a promising renewable energy technology, especially for utility or large-scale deployments. Like all new technologies, it has obstacles and setbacks to overcome. More specifically, the optics in a concentrator photovoltaics system introduce non-uniform spatial and spectral illumination on the cell, which can change under different operating conditions. This work was put together to discover a new characterization technique capable of analyzing the performance of a concentrator photovoltaics and provide insight to the field on what is happening within the system, linking modeling results seen in the literature to these experimental outcomes. The thesis is composed of three journal papers written by the candidate, who’s contributions are outlined at the beginning of each chapter. In order to study the illumination profiles on the cells, a new method to characterize the optical components had to be developed. Previous version lacked the ability to control the temperature of the lens and had low spectral resolution of the irradiance profiles. To improve, a novel indoor measurement method was developed capable of spectrally imaging concentrator photovoltaics optics and recreate outdoor operating conditions in a controllable environment. With the calibrated system, our test-bench is capable of measuring the spectral distribution with a 10μm2 resolution and characterizing the output of a system to within 3%. Exploiting this experimental technique, the individual effects of module misalignment, cell to primary distance, and lens temperature was studied for three leading technologies associated with the three generations of concentrator photovoltaics optical architectures. Focusing on Fresnel-based concentrator optics, the performance of silicone on a glass module without a secondary optic is the most sensitive to operating conditions, where lens temperature can decrease the absolute efficiency resulting in a difference of 11% in the annual energy yield. The next two generations have secondary optics but are designed slightly differently. The truncated inverted pyramid, designed independently of the primary optic, favoured higher lens temperature values and there was only a difference of 1% in the energy yield calculation. The primary and secondary optics in the 4-fold Fresnel-Kohler are designed together, due to new development tools, and showed the highest stability under the different operating conditions, demonstrating that concentrator photovoltaics is on the right track to overcoming its onset issue. As the technology matures, future designs can improve on the issues characterized within this thesis.
2

Konstrukce dvouosého solárního trackeru / The design of two axis solar tracker

Krejčí, David January 2011 (has links)
The purpose of this dissertation is to design the dual-axis solar tracker carrying the concentrator photovoltaic panels. The preamble of the dissertation shortly examines a photovoltaic cells development up to concentrators and the common support structures of solar power plants. The second part focuses on the engineering process itself. It includes the choice of the variant that suits best the requirements, the calculations of wind load and design of the various joints. The conclusion part is devoted to the evaluation, economy analysis of the construction and proposals for improvements.
3

Concentrator photovoltaics combined with reverse osmosis and membrane distillation for high-efficiency desalination and electricity production / Koncentrerade solceller i kombination med omvänd osmos och membrandestillation för högeffektiv avsaltning och elproduktion

Hou, Novalie, Jiang, Sofie January 2020 (has links)
This project is a bachelor thesis and aims to study the integration of concentrator photovoltaics (CPV), reverse osmosis (RO) and membrane distillation (MD) for water desalination and purification. In this report, an introduction of the need for efficient water desalination is presented. Following the introduction, relevant literature has been reviewed to build up the fundamental understanding of CPV, RO and MD. A general classification of CPV subsequently introduced. In order to acquire a more comprehensive understanding of CPVs, two case studies were performed with two different types of CPV/T. The cost efficiency of each type of CPV was analysed when integrated with RO and MD systems. The result turns out to be that it was not economically beneficial to have MD in the integrated system. The reason behind is the extensive thermal energy demand of MD. Other affecting parameters, such as location and system types were also discussed. Lastly, improvements and suggestions for further studies were considered. / Detta projekt är en kandidatuppsats och syftar till att studera ett integrerande system bestående av koncentrerade solceller (CPV), omvänd osmos (RO) och membrandestillation (MD) för vattenavsaltning och rening. Rapporten börjar med en introduktion om behovet av effektiv avsaltning av vatten. Relevant litteratur har granskats för att bygga upp den grundläggande förståelsen för CPV, RO och MD. Därefter gjordes en klassificering av CPV. För att få en mer omfattande förståelse av CPV valdes två olika typer av CPV /T för en djupare undersökning. Kostnadseffektiviteten för varje CPV analyserades, när dessa var integrerade med RO- och MD-system. Resultatet visar sig att det tyvärr inte var ekonomiskt fördelaktigt att ha med MD i det integrerade systemet. Anledningen bakom detta var det omfattande termiska energibehovet för MD. Andra avgörande faktorer, såsom plats och systemtyp diskuterades tillika. Slutligen avslutades rapporten med förslag på förbättringar och områden för vidare studier.

Page generated in 0.2279 seconds