• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Récupération d’énergie à partir de piles à combustible microbiennes benthiques / Energy harvesting from benthic microbial fuel cells

Capitaine, Armande 30 November 2017 (has links)
La récupération d'énergie ambiante est une solution efficace et respectueuse de l'écosystème pour alimenter de manière autonome des nœuds de capteurs. La pile microbienne benthique (BMFC) est un système récupérant l'énergie de la biomasse sédimentaire à l'aide du métabolisme électro-actif des bactéries présentes naturellement dans le milieu. Bien que prometteuse comme source d'énergie long terme pour des capteurs marins, ses niveaux de puissance (autour de 100 µW) et de tension (0,6 V en circuit ouvert) nous engage à mener une réflexion sur la conception de son interface électronique de récupération. La première partie de cette thèse détaille la conception de BMFCs de taille centimétrique faites en laboratoire en maintenant des conditions proches du milieu naturel. Une seconde partie s’intéresse à caractériser et modéliser le comportement électrique des BMFCs dans le domaine statique puis dynamique, en vue de concevoir le circuit de récupération de manière appropriée. A l’aide du modèle électrique statique, une interface de récupération est définie et optimisée de manière à extraire le maximum de puissance et maximiser le rendement de conversion. Le choix se porte sur le convertisseur flyback en mode de conduction discontinue. A l’aide d’un modèle prédisant les pertes du flyback validé expérimentalement, une étude portée sur la fréquence de découpage, le rapport cyclique et le choix des inductances couplées a permis d’atteindre un rendement de 82% et 64% pour une BMFC délivrant respectivement 90 µW et 30 µW. Une dernière partie s’intéresse à optimiser l’interface de récupération en prenant en compte les différentes variabilités de la BMFC. Notamment, l’intérêt du suivi du MPP est discuté et l’influence du comportement commuté du flyback sur les pertes dynamiques supplémentaires au sein de la BMFC est analysée grâce au modèle électrique dynamique de la BMFC déduit au second chapitre. / Harvesting energy in the surrounding environment is an advantageous alternative to conventional batteries for powering autonomously remote sensors in addition to processing in an eco-friendly way. Many researches currently focus on harvesting energy from solar, thermal and vibrational sources scavenged in environments near the sensor. Less analyzed in the literature, the benthic microbial fuel cell (BMFC) is an emerging harvesting technology that exploits the waste materials in the seafloors. The catalysis properties of bacteria into a couple of redox reactions convert chemical energy from the sediment into electrical energy. Although promising as a long-term energy source for marine sensors, its power levels (around 100 μW) and voltage (0.6 V in open circuit) commit us to reflect on the design of its electronic harvesting interface. The first chapter of this thesis details the design of lab-made cm2-BMFC while maintaining conditions close to the natural environment. A second chapter focuses on characterizing and modeling the electrical behavior of BMFCs in the static and dynamic domains. Thanks to the static electric model, a harvesting electrical interface is defined and optimized to extract the maximum power and maximize the conversion efficiency. The flyback converter in discontinuous conduction mode is chosen. By using a model predicting the losses of the experimentally validated flyback, we studied the choice of the switching frequency, the duty cycle and the coupled inductances. We reached an efficiency of 82% and 64% for a BMFC delivering respectively 90 μW and 30 μW. A final chapter focuses on optimizing the harvesting interface by taking into account the different variabilities of the BMFC. In particular, the interest of the MPP monitoring is discussed and the influence of the flyback switched behavior on the additional dynamic losses within the BMFC is analyzed thanks to the dynamic electrical model of the BMFC deduced in the second chapter.

Page generated in 0.0666 seconds