• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 1
  • Tagged with
  • 10
  • 10
  • 10
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effects of liquid nitrogen on concrete hydration, microstructure, and properties

Hema, John 28 August 2008 (has links)
Controlling the placement and hydration temperature of concrete is important to concrete durability. Thermal gradients and delayed ettringite formation (DEF) result in cracking when concrete in the plastic state becomes too hot. Cooler placement temperatures slow hydration reaction, increase working time, reduce the maximum temperature in the concrete member, and reduce thermal gradients. Furthermore, cooler concrete achieves better long-term strength and microstructural development. Concrete producers have been using multiple methods of reducing the placement temperature of concrete, such as cooling mixtures with ice or chilled water, shading aggregate piles, placing concrete at night, and using evaporative cooling of aggregate piles. More recently, concrete producers have turned to liquid nitrogen for cooling fresh concrete. The objective of this research was to determine the effects of liquid nitrogen on concrete hydration, microstructural development, and performance. The following concrete mixture properties and methods were investigated: cement type, the effects of selected supplementary cementing materials and chemical admixtures, placement temperature, and the time at which liquid nitrogen dosing occurs (delayed dosing). Concrete performance was tested in terms of slump, setting time, yield, compressive and splitting tensile strength, elastic modulus, rapid chloride permeability, and hardened and fresh air void analysis. Hydration and microstructural development were monitored by isothermal calorimetry, semi-adiabatic calorimetry, x-ray diffractometry, inductively coupled plasma, and environmental scanning electron microscopy. Additional testing was performed on concrete mixing drums to determine the effects of liquid nitrogen on the durability of steel mixing drums. The results indicate that performance, hydration, and microstructural development of fresh concrete are relatively unaffected when cooled with liquid nitrogen to room temperatures. Significant findings show that the slump of liquid nitrogen cooled concrete is similar to hot concrete mixtures and not room temperature mixtures. Additionally, setting time results show that liquid nitrogen dosing of hot concrete can be delayed for up to 1 hour and setting times will still be similar to room temperature mixtures. Based on findings from this research study, liquid nitrogen is recommended as a primary cooling option to reduce the placement temperature of fresh concrete.
2

Investigation of temperature distribution in highway bridges

廖智豪, Liu, Chi-ho, Timothy. January 1985 (has links)
published_or_final_version / Civil Engineering / Master / Master of Philosophy
3

The practice and effects of hot weather concreting

Creager, William Bronson, 1948- January 1972 (has links)
No description available.
4

Fire resistance of corroded structural concrete

Unknown Date (has links)
One of the major causes of structural repairs worldwide is the corrosion of reinforced concrete structures, such as residential buildings and piers, which are exposed to harsh marine environments. This investigation aims to provide experimental evidence of the fire resistance of corroded high strength reinforced concrete. For this, 14 reinforced concrete beams of three different concrete mix designs (different strengths) were prepared along with concrete cylinders for compression strength testing (ASTM C39). After proper moist curing, all beams were corroded, in two phases, with impressed current, then “crack scored ”for corrosion evaluation, after which half were exposed to fire, also in two phases, following the ASTM E-119-12 time-temperature curve, using a gas kiln. The fire damage was evaluated and compared between phases by using Ultrasonic Pulse Velocity technology. Finally, all specimens were tested for flexural strength by using the third-point loading method (ASTM C78) and the effects of fire on the corroded beams were analyzed according to the level of corrosion. / Includes bibliography. / Thesis (M.S.)--Florida Atlantic University, 2014. / FAU Electronic Theses and Dissertations Collection
5

Concrete hydration, temperature development, and setting at early-ages

Schindler, Anton Karel 09 May 2011 (has links)
Not available / text
6

Ferrocement marine mixes in warm and humid environment

Kowalski, Tadeusz Gabriel. January 1973 (has links)
published_or_final_version / Civil Engineering / Doctoral / Doctor of Philosophy
7

Fire performance of high strength concrete materials and structural concrete

Unknown Date (has links)
In recent years, high strength concrete (HSC) is becoming an attractive alternative to traditional normal strength concrete (NSC), and is used in a wide range of applications. With the increased use of HSC, concern has developed regarding the behavior of such concrete in fire. Until now, the fire performance of HSC is not fully understood and more research is needed. Full-scale fire testing is time consuming and expensive, and the real fire scenario is different from the standard fire. Performance-based assessment methods, including numerical analysis and simplified method, are being accepted in an increasing number of countries. In this dissertation, the fire testing results both of HSC and NSC are presented, performance-based numerical models are developed to study the fire performance of reinforced concrete (RC) members, and simplified calculation methods are proposed to estimate the load capacity of fire-damaged RC columns/beams. A detailed and comprehensive literature review is presented that provides background information on the high temperature behavior of concrete materials and RC members, as well as information on fire performance assessment procedures and objectives. The fire testing results of seven batches of HSC and NSC are presented and discussed. The test results indicated that the post-fire re-curing results in substantial strength and durability recovery, and its extent depends upon the types of concrete, temperature level, and re-curing age. The fire tests also showed that violent explosive reduced the risk of HSC explosive spalling. The surface crack widths were also reduced during the re-curing process, and in most cases, they were found within the maximum limits specified by the American Concrete Institute (ACI) building code. / Numerical models are developed herein to investigate the behavior in fire of RC columns and beams. The models have been validated against fire test data available in literature, and used to conduct parametric studies, which focused on the size effect on fire resistance of RC columns, and the effect of concrete cover thickness on fire endurance of RC beams. Simplified calculation methods have been developed to predict the load capacity of fire damaged RC columns/beams. This method is validated by five case studies, including thirty-five RC columns tested by other investigators. The predicted results are compared with the experimental results, and the good agreement indicates the adequacy of the simplified method for practical engineering applications. / by Lixian Liu. / Thesis (Ph.D.)--Florida Atlantic University, 2009. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web.
8

Prediction of low temperature cracking of asphalt concrete mixtures with thermal stress restrained specimen test results

Kanerva, Hannele K. 21 June 1993 (has links)
Low temperature cracking is attributed to tensile stresses induced in an asphalt concrete pavement that develop when the pavement is subjected to a cold temperature. Cracking results in poor ride quality and a reduction in service life of the pavement. Low temperature cracking has been predicted by regression equations, mechanistic approaches and by simulation measurements. The purpose of the study reported herein is to (1) evaluate the Thermal Stress Restrained Specimen Test (TSRST) as an accelerated performance test to simulate low temperature cracking of asphalt concrete mixtures and (2) develop a deterministic and probabilistic model to predict low temperature cracking with TSRST results. Construction histories, cracking observations and temperature data were collected for five test roads in Alaska, Pennsylvania and Finland. A full scale and fully controlled low temperature cracking test program was conducted at the U.S. Army Cold Regions Research and Engineering Laboratory (USACRREL). Specimens were fabricated in the laboratory with original asphalt cements and aggregates from the test roads. In addition, asphalt concrete pavement specimens were cut from the test sections. The TSRST results obtained for these samples were correlated with the field observations. Based on a statistical analysis of the data, the TSRST fracture temperature is associated with the field cracking temperature and crack frequency for the test roads where mixture properties dominated low temperature cracking. It was concluded that the TSRST can be used to simulate low temperature cracking of asphalt concrete mixtures. A deterministic and a probabilistic model were developed to predict crack spacing as a function of time using the TSRST results, pavement thickness and bulk density, pavement restraint conditions and air temperature. The affect of aging on pavement properties was incorporated in the models by predicting the field aging with Long Term Oven Aging (LTOA) treatment in the laboratory. The calculation of the crack spacing is based on the theory that the pavement slab cracks when the pavement temperature reaches the cracking temperature of the mixture and the slab is fully restrained. The deterministic model predicts crack spacing with time whereas the probabilistic model predicts crack spacing and its variation with time and yields the reliability of the design with regard to a minimum acceptable crack spacing criterion defined by road authorities. The models were verified by comparing the predicted crack spacings for the five test roads to the observed crack spacings. The probabilistic model is recommended for use in predicting the low temperature cracking of asphalt concrete mixtures. / Graduation date: 1994
9

Selection and performance evaluation of a test method to assess thermal cracking resistance of asphalt-aggregate mixtures

Jung, Duhwoe 30 July 1993 (has links)
Thermal distress in asphalt concrete pavements is a widespread problem around the world. Thermal cracking can be divided into two modes of distress: low temperature cracking and thermal fatigue cracking. Low temperature cracking results from extremely cold temperatures; thermal fatigue cracking results from daily temperature cycles. Low temperature cracking is attributed to tensile stresses induced in the asphalt concrete pavement as the temperature drops to an extremely low temperature. If the pavement is cooled, tensile stresses develop as a result of the pavement's tendency to contract. The friction between the pavement and the base layer resists the contraction. If the tensile stress equals the strength of the mixture at that temperature, a micro-crack develops at the surface of the pavement. Under repeated temperature cycles, the crack penetrates the full depth and across the asphalt concrete layer. The thermal stress restrained specimen test (TSRST) was identified as an accelerated laboratory test to evaluate the thermal cracking resistance of asphalt concrete mixtures. The TSRST system developed at OSU includes a load system, data control/acquisition system and software, temperature control system, and specimen alignment stand. The overall system is controlled by a personal computer. A TSRST is conducted by cooling an asphalt concrete specimen at a specified rate while monitoring the specimen at constant length. A typical thermally-induced stress curve is divided into two parts: relaxation and non-relaxation. The temperature at which the curve is divided into two parts is termed the transition temperature. The temperature at fracture is termed the fracture temperature and the maximum stress is the fracture strength. An extensive number of TSRSTs over a wide range of conditions were performed to investigate the thermal cracking resistance of asphalt concrete mixtures. The TSRST results provided a very strong indication of low temperature cracking resistance for all mixtures considered. A ranking of mixtures for low temperature cracking resistance based on the TSRST fracture temperature was in excellent agreement with a ranking based on the physical properties of the asphalt cements. It is highly recommended that the TSRST be used in mix evaluation to identify low temperature cracking resistance of asphalt concrete mixtures. The TSRST showed very promising results regarding the effect of all variables which are currently considered to affect the low temperature cracking of mixtures. The variables considered to have significant affect on the low temperature cracking resistance of mixtures in this study include asphalt type, aggregate type, degree of aging, cooling rate, and stress relaxation. / Graduation date: 1994
10

Avaliação das propriedades fisicas e mecanicas de concretos produzidos com os cimentos Portland de alta resistencia inicial e de alto-forno aditivados com silica ativa curados termicamente / Evaluation of physical and mechanical properties of steam cured concrete made with high early strenght Portland cement and blastfurnace slag cement containing silica fume

Bardella, Paulo Sergio 19 January 2005 (has links)
Orientador: Gladis Camarini / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Civil, Arquitetura e Urbanismo / Made available in DSpace on 2018-08-05T12:07:39Z (GMT). No. of bitstreams: 1 Bardella_PauloSergio_M.pdf: 1317917 bytes, checksum: 2bd53842fd42fd70b176488c91fedd8f (MD5) Previous issue date: 2005 / Resumo: A durabilidade das estruturas de concreto depende da estrutura porosa e da impermeabilidade do concreto, uma vez que a entrada de água e de agentes deletérios iniciam os processos patológicos que diminuem a vida útil de uma estrutura de concreto. Dessa forma, o objetivo deste trabalho foi avaliar a resistência mecânica, permeabilidade, absorção e carbonatação natural de concretos submetidos a diferentes condições de cura. Os procedimentos de cura adotados são normalmente utilizadds em canteiros de obra e na produção de estruturas pré-moldadas de concreto: cura imersa até a idade de 7 dias, cura ambiente e cura térmica. A cura térmica foi realizada na temperatura de 60°C. Foram empregados concretos produzidos com cimento Portland de Alta Resistência Inicial (CP V ARI) e cimento Portland de Alto Forno (CP III) sem e com sílica ativa (em substituição ao cimento na proporção de 10% em massa) para cada um dos diferentes tipos de cura utilizados. Os resultados evidenciaram que o tipo de cura afeta o desempenho do concreto. A mudança do tipo de cura aplicada proporcionou variações nas propriedades mecânicas e na durabilidade dos concretos, principalmente no que diz respeito à sua estrutura porosa. Assim, um regime de cura adequado é essencial para garantir a resistência mecânica e a durabilidade dos concretos. A utilização de sílica ativa em substituição ao cimento melhorou o desempenho dos concretos, tanto para a resistência mecânica quanto para a durabilidade, independente do tipo de cura empregado / Abstract: The durability of concrete structures depends on porous structure and its impermeability. The entrance of water and deleterious agents begin the damage processes and reduce the life of the concretestructure. ln that way, the aim of this work was to evaluate the mechanical resistance, permeability, absorption and natural carbonation of concretes submitted to different curing procedures. The curing procedures adopted were usually used in civil construction and in the production of precast structures: moist curing until the age 6f 7 days, curing in air, and steam curing. The maximum temperature of steam curing was 60°C. All concretes were produced with High Early Strength Portland cement (CP V ARl) and Blastfurnace Portland cement (CP TIl) without and with silica fume (10% of replacement, by mass, of Portland cement) for each one of the different curing procedure used. The results showed that the curing procedure affects the concrete performance, providing variations in their mechanical properties and in their durability, mainly in porous structure. Therefore, the curing process used is essential to guarantee the mechanical resistance and the durability of the concretes. The use of silica fume improved the performance of the concretes, as for the mechanical resistance as for its durability, independent of the curing procedure used. / Mestrado / Edificações / Mestre em Engenharia Civil

Page generated in 0.1195 seconds