Spelling suggestions: "subject:"concrete teams. entrains anda stresses."" "subject:"concrete teams. entrains ando stresses.""
1 |
Strain energy capacity of reinforced concrete beams /Law, Man-wai. January 1987 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1987.
|
2 |
Effects of repeated loading on prestressed concrete composite beams.Chung, Tai-yuen, Eric. January 1974 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1974.
|
3 |
Strain energy capacity of prestressed concrete beams.Kwei, Chi-shun, Gibson, January 1978 (has links)
Thesis--M. Phil., University of Hong Kong, 1978. / Errata slip inserted.
|
4 |
Effects of repetitive loading on prestressed concrete beams with unbonded tendons.Yim, Chun-nam () January 1972 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1972. / Mimeographed.
|
5 |
Strain energy capacity of reinforced and prestressed concrete beams /Tang, Ka-hung, William. January 1990 (has links)
Thesis (M. Phil.)--University of Hong Kong, 1991.
|
6 |
Moment-curvature relationships in reinforced concrete /Prasad, M. N. Nagendra, January 1993 (has links)
Thesis (M.S.)--Virginia Polytechnic Institute and State University, 1993. / Vita. Abstract. Includes bibliographical references (leaf 42). Also available via the Internet.
|
7 |
Intermediate crack debonding of plated reinforced concrete beamsLiu, Irene S. T. January 2006 (has links)
With increasing number of structures reaching their designed life or capacities everyday, retrofitting has become an important area in civil engineering. A popular method of strengthening and stiffening reinforced concrete ( RC ) beams is by adhesively bonding steel or FRP plates to the external surfaces. This technique has been proven to be efficient, inexpensive, unobtrusive and can be applied while the structure is in use. However, it has been found that adhesively bonded plates are prone to premature debonding prior to reaching their designed capacities, which restricts the use of existing design rules and guidelines for retrofitting RC beams using this relatively new form of structure. There are various forms of debonding including : plate end ( PE ) debonding ; critical diagonal crack ( CDC ) debonding ; and intermediate crack ( IC ) debonding. IC debonding is an especially important mechanism as it will occur at plated hinges of continuous members, and unlike other premature debonding mechanisms, IC debonding is very difficult to prevent. This debonding mechanism is associated with the formation of flexural or flexural - shear cracks in the vicinity of the plates, which causes slip to occur at the plate / concrete as well as the bar / concrete interfaces. Most research to date has been focusing on the bond - slip relationship at the plate / concrete interface, while little attention has been given to the IC debonding behaviour of flexural members. To allow safe and effective use of plated structures, it is necessary to model the debonding behaviours at the plate / concrete interface as premature debonding will affect both the strength and ductility of the members, and hence the ability of continuous structures to redistribute moment. Despite the importance of moment redistribution, very limited research has been carried out on the moment redistribution of continuous plated members. Since IC debonding is likely to occur at plated hinges of continuous members hence affecting the ductility of the hinges, the existing approaches for determining moment redistribution of reinforced concrete beams cannot be applied to plated members. In this research a numerical model based on discrete cracking and partial interaction theory has been developed which models the IC debonding of plated beams, taking into account the slips at all interfaces. This model will allow a better understanding of the IC debonding behaviour of plated members, and also from the model, the rotation capacity of both plated and unplated hinges in continuous reinforced concrete beams can be determined. Mathematical models and design rules have been developed for analysing critical diagonal crack debonding, which is dependent on the IC debonding behaviour of the plated members. Moment redistribution of beams with externally bonded and near surface mounted plates is studied through a series of tests and a mathematical model based on variation in flexural rigidity is proposed. Through the tests carried out on continuous plated beams, much moment redistribution is evident as oppose to that suggested by the existing design guidelines for plated members, where no moment redistribution is allowed for members plated with FRP. From the models proposed for IC and CDC debonding in this research, together with the existing PE debonding models available, all debonding mechanisms can now be modelled. Furthermore from the research on continuous plated beams, moment redistribution of plated beams can be analysed, allowing safe, effective and economic use of this retrofitting technique. This thesis is presented in the form of a collection of journal papers published or submitted for publication as a result of the research performed by the author. A selection of ten publications have been included in the following context, together with literature reviews performed on the related areas of studies, as well as further discussions on the papers, which consist of any additional information or work that was carried out in this research but not presented in the papers. / Thesis (Ph.D.)--School of Civil and Environmental Engineering, 2006.
|
8 |
Shear capacity of fiber reinforced polymer strengthened reinforced concrete beams.Muhammad Rashid, Raizal Saifulnaz January 2007 (has links)
Title page, abstract and table of contents only. The complete thesis in print form is available from the University of Adelaide Library. / The major contribution of this thesis is towards the shear capacity and shear failure mechanism of reinforced concrete beams with adhesively bonded transverse near surface mounted fiber reinforced plastic plates. In shear strengthening, there are two forms of plate debonding that interact with each other consisting of intermediate crack debonding that is governed by the axial forces in the plate are induced by shear deformations. This research considers both forms of debonding and in particularl their interaction. -- From abstract. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1283733 / Thesis (Ph.D.) -- University of Adelaide, School of Civil and Environmental Engineering, 2007
|
9 |
Shear capacity of fiber reinforced polymer strengthened reinforced concrete beams.Muhammad Rashid, Raizal Saifulnaz January 2007 (has links)
Title page, abstract and table of contents only. The complete thesis in print form is available from the University of Adelaide Library. / The major contribution of this thesis is towards the shear capacity and shear failure mechanism of reinforced concrete beams with adhesively bonded transverse near surface mounted fiber reinforced plastic plates. In shear strengthening, there are two forms of plate debonding that interact with each other consisting of intermediate crack debonding that is governed by the axial forces in the plate are induced by shear deformations. This research considers both forms of debonding and in particularl their interaction. -- From abstract. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1283733 / Thesis (Ph.D.) -- University of Adelaide, School of Civil and Environmental Engineering, 2007
|
Page generated in 0.1101 seconds