• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On-site application of self-compacting concrete (SCC)

Rich, David January 2014 (has links)
Self-Compacting Concrete (SCC) is a material which under its own self-weight flows to form and fill any shape, attains full compaction, without external energy input, to create a dense homogenous mass (based on Holton, 2003; The Concrete Society and BRE, 2005; Damtoft et al, 2008). It is, in respect to the history of concrete, a relatively new development, with its first UK application occurring in the late 1990s. Since then a significant amount of research has sought to understand its physical and structural properties, but there is a lack of a knowledge base on its practical application and performance in construction projects. Where it does exist, such research lacks robust and transparent data, particularly relating to the claimed attributes of the material (such as better surface finish, faster construction and lower overall costs). Using a combination of qualitative and quantitative research methods, this research investigates the construction practices employed when pouring SCC and presents new data on its practical applications. Interviews with a range of building contractors, ranging from multinationals to small UK businesses (SMEs), show that current perceptions of SCC limit its use to specific applications because practitioners see SCC as just another type of concrete . A critical examination of these attitudes led to the identification of three distinct scenarios for the use of SCC: 1. Reactive selection: in which a particular attribute of SCC provokes its use to solve a particular problem, often as a last minute substitution for conventional concrete the most common scenario. 2. Strategic change: in which the material is chosen on the basis of a balanced assessment of all its benefits and on the understanding that such benefits can only be attained if the contractor appreciates that there may be implications for the construction process a rarely experienced scenario. 3. Specification: in which there is complete acceptance of SCC as a method, not just as a material; a significant amount of early project involvement with knowledge holders, such as contractors and material suppliers, optimises the construction process. A rigorous work measurement study of live construction projects has made it possible to quantify the as-built costs of SCC for selected UK residential slab and multi-storey flat slab applications and compare this with the equivalent conventional concrete slab construction. On-site use of self-compacting concrete vi The results indicate that SCC can reduce construction times of structural topping layers of residential slabs by up to 73%, and has shown that SCC can also match, if not reduce, total as-built concrete placement costs in multi-storey applications. This new data will enable contractors, designers and specifiers to better understand the practical implications of using SCC for on-site applications, thereby leading to more potential instances of its early and planned specification, hence resulting in more of its full benefits being realised.
2

Analysis, design, and construction of tilt-up wall panel

Lim, Chim Chai 17 November 2012 (has links)
The idea of tilt-up construction started in America in the early I900’s. In the beginning, this technique was mainly used on structures such as industrial warehouses and factories. However, recent developments and improvements in tilt-up construction technique and accessories have enabled this building method to be applied to many architecturally appealing offices and residential structures. There are many details the design-build team must consider to ensure the success of a tilt-up project. The floor slab must be designed for panel casting and to withstand the loading of the mobile crane which will be used to lift the panel. The crane capacity affects the panel size and weight. Proper curing and bondbreaker application are very important to reduce bonding and to ensure clear cleavage between concrete surfaces. Changing rigging configuration consumes expensive crane time and must be reduced to minimum possible. The availability of ground-release quick connect/disconnect tilt—up hardware improves workers safety and speeds up the erection process substantially. Although the stress analysis of simple wall panels during erection can be done by hand, panels with more complicated geometry or with openings, are more efficiently analysed with a computer. Many manufacturers have technical services to help in the design of insert layout so that the concrete will not be over stressed when the panel is tilted into position. After the panel is plumbed, it is braced temporarily before the final connection is made. For in-place loading there are now design aids available which ease the design process. When properly designed and built, tilt—up has proved to be a fast, efficient, and economical building construction technique. / Master of Science

Page generated in 0.4613 seconds