• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 100
  • 41
  • 28
  • 6
  • 6
  • 5
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 201
  • 201
  • 105
  • 101
  • 89
  • 48
  • 46
  • 36
  • 32
  • 32
  • 24
  • 23
  • 23
  • 22
  • 22
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Seismic Fragility Analysis and Loss Estimation for Concrete Structures

Bai, Jong Wha 2011 December 1900 (has links)
The main objective of this study is to develop a methodology to assess seismic vulnerability of concrete structures and to estimate direct losses related to structural damage due to future seismic events. This dissertation contains several important components including development of more detailed demand models to enhance accuracy of fragility relationships and development of a damage assessment framework to account for uncertainties. This study focuses on concrete structures in the Mid-America region where a substantial seismic risk exists with potential high intensity earthquakes in this geographic region. The most common types of concrete structures in this area are identified based on the building inventory data and reinforced concrete (RC) frame buildings and tilt-up concrete buildings are selected as case study buildings for further analysis. Using synthetic ground motion records, the structural behavior of the representative case study buildings is analyzed through nonlinear time history analyses. The seismic performance of the case study buildings is evaluated to describe the structural behavior under ground motions. Using more detailed demand models and the corresponding capacity limits, analytical fragility curves are developed based on appropriate failure mechanisms for different structural parameters including different RC frame building heights and different aspect ratios for tilt-up concrete structures. A probabilistic methodology is used to estimate the seismic vulnerability of the case study buildings reflecting the uncertainties in the structural demand and capacity, analytical modeling, and the information used for structural loss estimation. To estimate structural losses, a set of damage states and the corresponding probabilistic framework to map the fragility and the damage state are proposed. Finally, scenario-based assessments are conducted to demonstrate the proposed methodology. Results show that the proposed methodology is successful to evaluate seismic vulnerability of concrete structures and effective in quantifying the uncertainties in the loss estimation process.
12

Seismic Assessment of Pre-1970s Reinforced Concrete Structure

Hertanto, Eric January 2005 (has links)
Reinforced concrete structures designed in pre-1970s are vulnerable under earthquakes due to lack of seismic detailing to provide adequate ductility. Typical deficiencies of pre-1970s reinforced concrete structures are (a) use of plain bars as longitudinal reinforcement, (b) inadequate anchorage of beam longitudinal reinforcement in the column (particularly exterior column), (c) lack of joint transverse reinforcement if any, (d) lapped splices located just above joint, and (e) low concrete strength. Furthermore, the use of infill walls is a controversial issue because it can help to provide additional stiffness to the structure on the positive side and on the negative side it can increase the possibility of soft-storey mechanisms if it is distributed irregularly. Experimental research to investigate the possible seismic behaviour of pre-1970s reinforced concrete structures have been carried out in the past. However, there is still an absence of experimental tests on the 3-D response of existing beam-column joints under bi-directional cyclic loading, such as corner joints. As part of the research work herein presented, a series of experimental tests on beam-column subassemblies with typical detailing of pre-1970s buildings has been carried out to investigate the behaviour of existing reinforced concrete structures. Six two-third scale plane frame exterior beam-column joint subassemblies were constructed and tested under quasi-static cyclic loading in the Structural Laboratory of the University of Canterbury. The reinforcement detailing and beam dimension were varied to investigate their effect on the seismic behaviour. Four specimens were conventional deep beam-column joint, with two of them using deformed longitudinal bars and beam bars bent in to the joint and the two others using plain round longitudinal bars and beam bars with end hooks. The other two specimens were shallow beam-column joint, one with deformed longitudinal bars and beam bars bent in to the joint, the other with plain round longitudinal bars and beam bars with end hooks. All units had one transverse reinforcement in the joint. The results of the experimental tests indicated that conventional exterior beam-column joint with typical detailing of pre-1970s building would experience serious diagonal tension cracking in the joint panel under earthquake. The use of plain round bars with end hooks for beam longitudinal reinforcement results in more severe damage in the joint core when compared to the use of deformed bars for beam longitudinal reinforcement bent in to the joint, due to the combination of bar slips and concrete crushing. One interesting outcome is that the use of shallow beam in the exterior beam-column joint could avoid the joint cracking due to the beam size although the strength provided lower when compared with the use of deep beam with equal moment capacity. Therefore, taking into account the low strength and stiffness, shallow beam can be reintroduced as an alternative solution in design process. In addition, the presence of single transverse reinforcement in the joint core can provide additional confinement after the first crack occurred, thus delaying the strength degradation of the structure. Three two-third scale space frame corner beam-column joint subassemblies were also constructed to investigate the biaxial loading effect. Two specimens were deep-deep beam-corner column joint specimens and the other one was deep-shallow beam-corner column joint specimen. One deep-deep beam-corner column joint specimen was not using any transverse reinforcement in the joint core while the two other specimens were using one transverse reinforcement in the joint core. Plain round longitudinal bars were used for all units with hook anchorage for the beam bars. Results from the tests confirmed the evidences from earthquake damage observations with the exterior 3-D (corner) beam-column joint subjected to biaxial loading would have less strength and suffer higher damage in the joint area under earthquake. Furthermore, the joint shear relation in the two directions is calibrated from the results to provide better analysis. An analytical model was used to simulate the seismic behaviour of the joints with the help of Ruaumoko software. Alternative strength degradation curves corresponding to different reinforcement detailing of beam-column joint unit were proposed based on the test results.
13

Proposição de ações para melhoria da produtividade da concretagem em edifícios verticais. / Proposition of actions to improve concrete placement labor productivity in vertical buildings.

Manuela Modesto Dantas 03 July 2006 (has links)
Este trabalho tem por objetivo a proposição de um conjunto de medidas visando trazer um incremento na produtividade do serviço de concretagem em Estruturas Reticuladas de Concreto Armado (ERCA). Inicialmente o trabalho baseou-se em um amplo levantamento sobre o tema produtividade da mão-de-obra no serviço de concretagem e sobre métodos de obtenção e avaliação de opiniões de pessoas. Procedeu-se, através da realização de entrevistas e por meio de estudo de campo ao levantamento de fatores intervenientes na produtividade do serviço concretagem. A análise dos fatores apontados nas duas abordagens subsidiou a elaboração de uma proposição de ações que potencialmente levariam a melhorias nos indicadores de produtividade da concretagem; um questionário Delphi serve ao propósito de escolher, dentro do conjunto de propostas, aquelas com maior expectativa quanto à relação custo-benefício com priorização de ações mais viáveis de serem implementadas. / This research had as an objective the proposition of a group of measures that can be used to improve labor productivity in buildings structures concrete placement. At first this work raised data on the subject of labor productivity in concrete placement and on the method of obtaining and evaluating persons\' opinions. By means of interview and field camp study, information could be raised about factors involved in concrete placement. Those factors\' analysis provided the elaboration of a proposition of actions that would help on the improvement of the labor productivity indexes in concrete placement; with the Delphi questionnaire the best propositions amongst all could be chosen in the aspect of cost-benefit and viability.
14

Uncertainty Based Damage Identification and Prediction of Long-Time Deformation in Concrete Structures

Biswal, Suryakanta January 2016 (has links) (PDF)
Uncertainties are present in the inverse analysis of damage identification with respect to the given measurements, mainly the modelling uncertainties and the measurement uncertainties. Modelling uncertainties occur due to constructing a representative model of the real structure through finite element modelling, and representing damage in the real structures through changes in material parameters of the finite element model (assuming smeared crack approach). Measurement uncertainties are always present in the measurements despite the accuracy with which the measurements are measured or the precision of the instruments used for the measurement. The modelling errors in the finite element model are assumed to be encompassed in the updated uncertain parameters of the finite element model, given the uncertainties in the measurements and in the prior uncertainties of the parameters. The uncertainties in the direct measurement data are propagated to the estimated output data. Empirical models from codal provisions and standard recommendations are normally used for prediction of long-time deformations in concrete structures. Uncertainties are also present in the creep and shrinkage models, in the parameters of these models, in the shrinkage and creep mechanisms, in the environmental conditions, and in the in-situ measurements. All these uncertainties are needed to be considered in the damage identification and prediction of long-time deformations in concrete structures. In the context of modelling uncertainty, uncertainties can be categorized into aleatory or epistemic uncertainty. Aleatory uncertainty deals with the irresolvable indeterminacy about how the uncertain variable will evolve over time, whereas epistemic uncertainty deals with lack of knowledge. In the field of damage detection and prediction of long time deformations, aleatory uncertainty is modeled through probabilistic analysis, whereas epistemic uncertainty can be modeled through (1) Interval analysis (2) Ellipsoidal modeling (3) Fuzzy analysis (4) Dempster-Shafer evidence theory or (5) Imprecise probability. Many a times it is di cult to determine whether a particular uncertainty is to be considered as an aleatory or as an epistemic uncertainty, and the model builder makes the distinction. The model builder makes the choice based on the general state of scientific knowledge, on the practical need for limiting the model sophistication to a significant engineering importance, and on the errors associated with the measurements. Measurement uncertainty can be stated as the dispersion of real data resulting from systematic error (instrumental error, environmental error, observational error, human error, drift in measurement, measurement of wrong quantity) and random error (all errors apart from systematic errors). Most of instrumental errors given by the manufacturers are in terms of plus minus ranges and can be better represented through interval bounds. The vagueness involved in the representation of human error, observational error, and drift in measurement can be represented through interval bounds. Deliberate measurement of wrong quantity through cheaper and more convenient measurement units can lead to bad quality data. Quality of data can be better handled through interval analysis, with good quality data having narrow width of interval bounds and bad quality data having wide interval bounds. The environmental error, the electronic noise coming from transmitting the data and the random errors can be represented through probability distribution functions. A major part of the measurement uncertainties is better represented through interval bounds and the other part, is better represented through probability distributions. The uncertainties in the direct measurement data are propagated to the estimated output data (in damage identification techniques, the damaged parameters, and in the long-time deformation, the uncertain parameters of the deformation models, which are then used for the prediction of long-time deformations). Uncertainty based damage identification techniques and long-time deformations in concrete structures require further studies, when the measurement uncertainties are expressed through interval bounds only, or through both interval and probability using imprecise techniques. The thesis is divided into six chapters. Chapter 1 provides a review of existing literature on uncertainty based techniques for damage identification and prediction of long-time deformations in concrete structures. A brief review of uncertainty based methods for engineering applications is made, with special highlight to the need of interval analysis and imprecise probability for modeling uncertainties in the damage identification techniques. The review identifies that the available techniques for damage identification, where the uncertainties in the measurements and in the structural and material parameters are expressed in terms of interval bounds, lack e ciency, when the size of the damaged parameter vector is large. Studies on estimating the uncertainties in the damage parameters when the uncertainties in the measurements are expressed through imprecise probability analysis, are also identified as problems that will be considered in this thesis. Also the need for estimating the short-term time period, which in turn helps in accurate prediction of long-time deformations in concrete structures, along with a cost effective and easy to use system of measuring the existing prestress forces at various time instances in the short-time period is noted. The review identifies that most of modelers and analysts have been inclined to select a single simulation model for the long-time deformations resulted from creep, shrinkage and relaxation, rather than take all the possibilities into consideration, where the model selection is made based on the hardly realistic assumption that we can certainly select a correct, and the lack of confidence associated with model selection brings about the uncertainty that resides in a given model set. The need for a single best model out of all the available deformation models is needed to be developed, when uncertainties are present in the models, in the measurements and in the parameters of each models is also identified as a problem that will be considered in this thesis. In Chapter 2, an algorithm is proposed adapting the existing modified Metropolis Hastings algorithm for estimating the posterior probability of the damage indices as well as the posterior probability of the bounds of the interval parameters, when the measurements are given in terms of interval bounds. A damage index is defined for each element of the finite element model considering the parameters of each element are intervals. Methods are developed for evaluating response bounds in the finite element software ABAQUS, when the parameters of the finite element model are intervals. Illustrative examples include reinforced concrete beams with three damage scenarios mainly (i) loss of stiffness, (ii) loss of mass, and (iii) loss of bond between concrete and reinforcement steel, that have been tested in our laboratory. Comparison of the prediction from the proposed method with those obtained from Bayesian analysis and interval optimization technique show improved accuracy and computational efficiency, in addition to better representation of measurement uncertainties through interval bounds. Imprecise probability based methods are developed in Chapter 3, for damage identifi cation using finite element model updating in concrete structures, when the uncertainties in the measurements and parameters are imprecisely defined. Bayesian analysis using Metropolis Hastings algorithm for parameter estimation is generalized to incorporate the imprecision present in the prior distribution, in the likelihood function, and in the measured responses. Three different cases are considered (i) imprecision is present in the prior distribution and in the measurements only, (ii) imprecision is present in the parameters of the finite element model and in the measurement only, and (iii) imprecision is present in the prior distribution, in the parameters of the finite element model, and in the measurements. Illustrative examples include reinforced concrete beams and prestressed concrete beams tested in our laboratory. In Chapter 4, a steel frame is designed to measure the existing prestressing force in the concrete beams and slabs when embedded inside the concrete members. The steel frame is designed to work on the principles of a vibrating wire strain gauge and is referred to as a vibrating beam strain gauge (VBSG). The existing strain in the VBSG is evaluated using both frequency data on the stretched member and static strain corresponding to a fixed static load, measured using electrical strain gauges. The crack reopening load method is used to compute the existing prestressing force in the concrete members and is then compared with the existing prestressing force obtained from the VBSG at that section. Digital image correlation based surface deformation and change in neutral axis monitored by putting electrical strain gauges across the cross section, are used to compute the crack reopening load accurately. Long-time deformations in concrete structures are estimated in Chapter 5, using short-time measurements of deformation responses when uncertainties are present in the measurements, in the deformation models and in the parameters of the deformation models. The short-time period is defined as the least time up to which if measurements are made available, the measurements will be enough for estimating the parameters of the deformation models in predicting the long time deformations. The short-time period is evaluated using stochastic simulations where all the parameters of the deformation models are defined as random variables. The existing deformation models are empirical in nature and are developed based on an arbitrary selection of experimental data sets among all the available data sets, and each model contains some information about the deformation patterns in concrete structures. Uncertainty based model averaging is performed for obtaining the single best model for predicting the long-time deformation in concrete structures. Three types of uncertainty models are considered namely, probability models, interval models and imprecise probability models. Illustrative examples consider experiments in the Northwestern University database available in the literature and prestressed concrete beams and slabs cast in our laboratory for prediction of long-time prestress losses. A summary of contributions made in this thesis, together with a few suggestions for future research, are presented in Chapter 6. Finally the references that were studies are listed.
15

Mechanical Splices for Seismic Retrofitting of Concrete Structures

Huaco, G., Huaco, G., Jirsa, J. 07 February 2020 (has links)
As an alternative to lap splicing, mechanical splices can be used for retrofit purposes. They are generally most economical than traditional lap splices when available spacing or length makes laps difficult to utilize. Mechanical splices are frequently used in new construction. However, their use is limited and not practical for use in retrofitted structures. However, if the bars to be joined do not need to be threaded in order to be connected with a special mechanical splice, such mechanical splices can be useful. It is presented a proposal of using two types of mechanical splices for retrofit purposes. Cycle Tension and cycle tension-compression tests are presented and discussed. It was found that mechanical splices are suitable and have acceptable response under seismic loads.
16

Review of Transnet National Ports Marine Concrete Infrastructure Asset Management and Maintenance

Isaacs, Benedict 31 May 2022 (has links)
The South African Ports are considered a key engine for the economic growth of the country for import and export trade as well as passenger ships. In order to provide such services, the ports' waterside / wet concrete assets are pivotal to the business as trade and travel are reliant on the availability of safe and well-maintained concrete assets. Transnet is a State-Owned Company (SOC), wholly owned by the Government of the Republic of South Africa and is the custodian of rail, ports, and pipelines. The asset management and maintenance of Transnet's infrastructure assets are, therefore, the cornerstone of delivering on their mandate as a SOC. Moreover, to deliver on their mandate, systematic, holistic, and integrated approaches to asset management and maintenance of their assets are imperative. This dissertation focuses on the Transnet National Ports Authority (TNPA) division. It has a very large asset base of Infrastructure, in particular its marine concrete infrastructure. Regulated by the National Ports Act 2005 (Act No. 12 of 2005), some of their core functions are the planning, provision, maintenance, and improvement of port infrastructure. This dissertation gives a background on the structure of the South African Ports and operations and the types and age of concrete structures within the ports. The study also critically assesses the existence of and the type of Infrastructure Asset Management & Maintenance (IAMM) systems currently in place for the Asset Management and Maintenance of TNPA's concrete infrastructure assets. The approach and methods of managing and assessing assets' condition and maintaining their existing concrete structures are reviewed to ascertain whether their asset management systems are aligned and conform to certain IAMM standards, codes, and guidelines. The Asset Maintenance Principles & Procedures (AMPP) document is also reviewed for its effectiveness in maintaining assets. In order to get a holistic idea of the extent of the possible shortcomings of TNPA's current maintenance and asset management strategies, other ports around the world with similar or the same concrete infrastructure are identified and assessed for commonalities and deviations from best practices. The research methodology used is qualitative using the analysis of existing text and literature as well as case studies of other ports as a source of data. The findings of the research show that although there are good maintenance systems and guidelines in place with some elements of asset management principles, an all encompassing civil infrastructure asset management framework for the marine concrete assets does not exists where the benefits of a properly implemented asset management framework can be realised. The research also shows that asset management is largely treated as a financial exercise with finance being the custodian of asset management. Recommendations are made for dealing with the shortcomings identified. Recommendations are also made for a more in-depth case study for the TNPA to conduct based on the findings of this dissertation.
17

Finite Element Analysis of Concrete Structures Subjected to Alkali-Aggregate Reaction

Wu, Wenfei January 1996 (has links)
The alkali-aggregate reaction was first reported in 1940 as a cause of severe cracking in some concrete structures. It is only in recent years that papers have been published dealing with the effects of AAR on the performance of structures. This thesis outlines a methodology for numerical simulation of the response of concrete subjected to continuing AAR. First a constitutive model is presented based on the framework proposed by Pietruszczak (1996). The formulation incorporates an assumption that the rate of expansion depends on the confining pressure, the age of concrete and the temperature. The progress in the reaction is coupled with the degradation of mechanical properties, in particular the elastic modulus and the compressive and tensile strengths. Subsequently, the procedures for generating finite element models are described, including geometric modeling, mesh generation techniques, graphical representation of the results and interfacing between pre- and post-processor and the finite element solvers. The numerical analysis, undertaken in this thesis, pertains to the Beauharnois Powerhouse, situated in Quebec, Canada. The powerhouse has been experiencing problems related to a continuing expansion of concrete due to AAR since the early 1960’s. The progressive formation of macrocracks and the volumetric expansion in concrete has caused operational problems, such as the reduction in clearance between turbine runner blades and throat rings. In this study, typical structural units of the Beauharnois Powerhouse were selected for the numerical analysis. The AAR constitutive model was applied in a finite element framework. Mechanical properties of concrete were carefully evaluated based on available experimental data. Simulations were focused on the deformation and the time history of progressive macro/microcracking due to continuing reaction. Structural responses under isothermal as well as non-isothermal conditions were simulated. The results of the numerical analyses were then compared with in-situ measurements. / Thesis / Master of Engineering (ME)
18

Recovery and reuse of structural products from end-of-life buildings

Hopkinson, P., Chen, H-M., Zhou, Kan, Wang, Y., Lam, Dennis 18 July 2018 (has links)
Yes / Buildings and construction have been identified as having the greatest potential for circular economy value creation. One source of value creation is to recover and reuse building products from end-of-service-life buildings, rather than destructive demolition and downcycling. While there is a trade in non-structural and heritage product recovery and reuse, the largest volume, mass and value of most buildings comprise structural elements – concrete, brick and masonry, and steel – which present many challenges. A comprehensive literature review confirms limited attention to innovation and advanced techniques to address these challenges and therefore the potential reuse of the stocks of accumulated building products globally and associated environmental benefits. Potential techniques being tested in an Engineering and Physical Sciences Research Council circular economy research programme are referenced as a key building block towards circular economy building system redesign. / Engineering and Physical Sciences Research Council - research project Rebuild (EPSRC EP/P008917/1)
19

Demountable reinforced concrete slabs using dry connection

Almahmood, Hanady A.A., Ashour, Ashraf, Figueira, Diogo, Yildirim, Gurkan, Aldemir, A., Sahmaran, M. 06 May 2023 (has links)
Yes / This paper presents an experimental investigation of a new dry connection for reinforced concrete slab elements. Seven full-scale slabs were tested; one slab was monolithic as control specimens, while the other six were assembled using top and bottom steel plates joined by high tensile steel bolts. Two scenarios were proposed for the connection, a simple bolted connection, and a connection with a shear key. The parameters studied were the use of stirrups at the connection section, the step size of the shear key as well as the bolt diameter and number. The test results showed that using a shear key at the assembled section in demountable slabs is more efficient than the simple bolted connection, providing higher flexural stiffness, load capacity, and less deflection. However, increasing the shear key step size improved the flexural performance of the demountable slabs. In addition, adding stirrups to the assembled section enhanced the flexural stiffness and the total load capacity of the demountable slabs. Furthermore, the predictions for the moment capacity and deflection demountable slabs have reasonably good agreement with the experimental results but require additional calibrated data from experiments to be generalized. / Department for Business, Energy and Industrial Strategy (BEIS) / The full text will be available at the end of the publisher's embargo: 27th June 2024.
20

Computational Strategies for Dynamic Analysis of Reinforced Concrete Structures Subjected to Blast Loading

Rezaei, Seyed, H.C. 08 1900 (has links)
There has always been a challenge for designing structures against extreme dynamic loads. Blast loading falls under these loads category and blast resistant design has been gaining more interest during the past decade. Among different types of structures, Reinforced Concrete (RC) structures are usually recommended to be used for blast resistant design. However, the nonlinearities associated with these structures make their accurate analysis complicated. Therefore, simplified techniques have been introduced for nonlinear dynamic analysis of these structures. This study focuses on developing simplified computational strategies for the dynamic analysis of blast loaded RC elements including beams, panels/slabs and columns. For RC beams, the basis for commonly used Single-Degree-of-Freedom (SDOF) models has been outlined. A Multi-Degrees-of-Freedom (MDOF) model which takes into account the concrete nonlinear properties has been developed and the effect of varying the number of degrees-of-freedom (DOF) on response has been studied. Results showed that increasing the number of DOF affects the pressure-impulse (P-I) diagrams, especially in the impulsive regime, as the extent of damage increased. In addition, the model was compared with the experimental data and showed good agreement. For RC panels, a SDOF technique, based on the US Army Technical Manual TMS-1300 instructions, was constructed and results were compared with the ones obtained from explicit Finite Element (FE) analysis. Compared to the FE results, SDOF model yielded conservative predictions for deflection but it usually underestimated the dynamic reactions. A modification for reaction calculation was proposed which resulted in significantly better prediction of the reaction for the impulsive range of loading. Finally, considering the important role of columns in providing the overall stability of the structure, a MDOF model was developed for RC columns and the load carrying capacity of the columns was investigated for different levels of axial load, strain rate and damage. Increasing the strain rate enhanced the column's cross section properties whereas increasing the levels of axial load reduced the cross section curvature and the column deflection capacities. Results also showed that good detailing at the supports can significantly improve the load carrying capacity of RC columns. / Thesis / Master of Applied Science (MASc)

Page generated in 0.0642 seconds