• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Measurable Mictostructural Properties and their Relationship to Chloride Migration and Durability of Concrete

Lu, Shan January 2001 (has links) (PDF)
No description available.
2

A simple method of test for determining the permeability and capillarity of concrete

Chen, Yah-Tung. January 1959 (has links)
Call number: LD2668 .T4 1959 C45
3

Fire performance of high strength concrete materials and structural concrete

Unknown Date (has links)
In recent years, high strength concrete (HSC) is becoming an attractive alternative to traditional normal strength concrete (NSC), and is used in a wide range of applications. With the increased use of HSC, concern has developed regarding the behavior of such concrete in fire. Until now, the fire performance of HSC is not fully understood and more research is needed. Full-scale fire testing is time consuming and expensive, and the real fire scenario is different from the standard fire. Performance-based assessment methods, including numerical analysis and simplified method, are being accepted in an increasing number of countries. In this dissertation, the fire testing results both of HSC and NSC are presented, performance-based numerical models are developed to study the fire performance of reinforced concrete (RC) members, and simplified calculation methods are proposed to estimate the load capacity of fire-damaged RC columns/beams. A detailed and comprehensive literature review is presented that provides background information on the high temperature behavior of concrete materials and RC members, as well as information on fire performance assessment procedures and objectives. The fire testing results of seven batches of HSC and NSC are presented and discussed. The test results indicated that the post-fire re-curing results in substantial strength and durability recovery, and its extent depends upon the types of concrete, temperature level, and re-curing age. The fire tests also showed that violent explosive reduced the risk of HSC explosive spalling. The surface crack widths were also reduced during the re-curing process, and in most cases, they were found within the maximum limits specified by the American Concrete Institute (ACI) building code. / Numerical models are developed herein to investigate the behavior in fire of RC columns and beams. The models have been validated against fire test data available in literature, and used to conduct parametric studies, which focused on the size effect on fire resistance of RC columns, and the effect of concrete cover thickness on fire endurance of RC beams. Simplified calculation methods have been developed to predict the load capacity of fire damaged RC columns/beams. This method is validated by five case studies, including thirty-five RC columns tested by other investigators. The predicted results are compared with the experimental results, and the good agreement indicates the adequacy of the simplified method for practical engineering applications. / by Lixian Liu. / Thesis (Ph.D.)--Florida Atlantic University, 2009. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2009. Mode of access: World Wide Web.

Page generated in 0.1058 seconds