• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 94
  • 42
  • 15
  • 12
  • 11
  • 4
  • 3
  • 3
  • 2
  • Tagged with
  • 211
  • 96
  • 95
  • 46
  • 42
  • 37
  • 30
  • 21
  • 21
  • 20
  • 18
  • 17
  • 17
  • 17
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Development of a successful chemical treatment of gas wells with condensate or water blocking damage

Bang, Vishal, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
12

Sonder des structures complexes avec des ondes de matière / Probing complexe structures with matter waves

Damon, François 29 September 2015 (has links)
Ce manuscrit présente les travaux que j'ai effectués au Laboratoire de Physique Théorique durant ma thèse. Ils portent sur l'interaction d'ondes de matière avec des réseaux optiques modulables en temps et en espace. L'utilisation de ces réseaux a permis de contrôler de manière cohérente les propriétés dynamiques d'un gaz d 'atomes ultra-froids. Cette étude théorique a été réalisée en collaboration avec le groupe Atomes Froids du Laboratoire LCAR. Les variations spatiales de l'enveloppe d u réseau créent, localement, des gaps spatiaux créant une cavité de Bragg pour onde de matière, dont nous avons étudié en détail les propriétés et qui a fait l'objet d'une réalisation expérimentale impliquant la propagation d'un condensat de Bose-Einstein de rubidium 85 dans un guide d'onde. Nous avons également étudié la propagation d'un nuage d 'atomes dans un réseau bichromatique qui permet de réaliser un simulateur quantique du modèle de Harper. Le spectre du hamiltonien de ce système a une dimension fractale pouvant être caractérisée nu­ mériquement. Nous avons montré, par ailleurs, qu'il est possible d'exploiter les interactions inter-atomiques répulsives d'un condensat de Bose-Einstein afin d'amplifier les corrélations position-vitesse lors de sa pro­ pagation dans un guide. Notre étude montre qu'une mesure des grandeurs dynamiques locales du nuage atomique permet de sonder expérimentalement les résonances d'un potentiel optique jusqu'à l'échelle du picoKelvin. Enfin, un nuage d'atomes en interaction attractive admet une solution d'équilibre : le soliton. Nous avons démontré, numériquement, que celui-ci peut être utilisé pour sonder des états liés d'un poten­ tiel de taille finie, en peuplant ces états lors d'une expérience de diffusion comme, par exemple, des états de surface. / This thesis presents the studies that I did at the Laboratoire de Physique Théorique. It concerns the interaction between matter waves and time and space depandant optical lattices. Using such lattices allows one to manipulate coherently the dynamical properties of ultra cold atoms. This theoretical study has been done in collaboration with the Cold Atoms group at the LCAR laboratory. The spatial variations of the lattice envelope locally create spatial gaps which create a Bragg cavity for matter waves. We have st udied in detail their properties and the cavity has been realized experimentally by using a Ru bid ium 85 Bose-Einstein condensate in a wave guide. We have also studied the propagation of an atomic cloud in a bichromatic optical lattice which allows us to make a quantum simulator of the Harper madel. The spectrum of the system Hamiltonian· posseses a fractal dimension which can be numerically characterized. We have also shawn that it is possible to use the repulsive interatomic interaction of a Bose-Einstein condensate in arder to amplify the momentum-position correlation during propagation in a guide. Our st udy shows that a mesure of local dynamical quantities of the atomic cloud enables one to experimentally probe resonances of an optical potential down to the picoKelvin scale. At last, an atomic cloud with attractive interactions admit a stable solution, the soliton. We have numerically demonstrated that this soliton can be used to probe bound states of a potential by populating those states through a scattering experiment, for example surface states.
13

Guided-wave atom interferometers with Bose-Einstein condensate

Ilo-Okeke, Ebubechukwu Odidika 24 April 2012 (has links)
An atom interferometer is a sensitive device that has potential for many useful applications. Atoms are sensitive to electromagnetic fields due to their electric and magnetic moments and their mass allows them to be deflected in a gravitational field, thereby making them attractive for measuring inertial forces. The narrow momentum distribution of Bose-Einstein condensate (BEC) is a great asset in realizing portable atom interferometers. An example is a guided-wave atom interferometer that uses a confining potential to guide the motion of the condensate. Despite the promise of guided-wave atom interferometry with BEC, spatial phase and phase diffusion limit the contrast of the interference fringes. The control of these phases is required for successful development of a BEC-based guided-wave atom interferometer. This thesis analyses the guided-wave atom interferometer, where an atomic BEC cloud at the center of a confining potential is split into two clouds that move along different arms of the interferometer. The clouds accumulate relative phase due to the environment, spatially inhomogeneous trapping potential and atom-atom interactions within the condensate. At the end of the interferometric cycle, the clouds are recombined producing a cloud at rest and moving clouds. The number of atoms in the clouds that emerge depends on the relative phase accumulated by the clouds during propagation. This is investigated by deriving an expression for the probability of finding any given number of atoms in the clouds that emerge after recombination. Characteristic features like mean, standard deviation and cross-correlation function of the probability density distribution are calculated and the contrast of the interference fringes is optimized. This thesis found that optimum contrast is achieved through the control of total population of atoms in the condensate, trap frequencies, s-wave scattering length, and the duration of the interferometric cycle.
14

Altering Wettability in Gas Condensate Sandstone Reservoirs for Gas Mobillity Improvement

Fernandez Martinez, Ruth Gabriela 2011 May 1900 (has links)
In gas-condensate reservoirs, production rate starts to decrease when retrograde condensation occurs. As the bottomhole pressure drops below the dewpoint, gascondensate and water buildup impede flow of gas to the surface. To stop the impairment of the well, many publications suggest wettability alteration to gas-wetting as a permanent solution to the problem. Previous simulation work suggests an "optimum wetting state" to exist where maximum gas condensate well productivity is reached. This work has direct application in gas-condensate reservoirs, especially in identifying the most effective stimulation treatment which can be designed to provide the optimum wetting conditions in the near-wellbore region. This thesis presents an extensive experimental study on Berea sandstone rocks treated with a fluorinated polymer. Various concentrations of the polymer are investigated to obtain the optimum alteration in wettability to intermediate gas-wet. This wetting condition is achieved with an 8% polymer solution treatment, which yields maximum gas mobility, ultimately increasing the relative permeability curves and allowing enhanced recovery from gas-condensate wells. The treatments are performed mainly at room conditions, and also under high pressure and high temperature, simulating the natural environment of a reservoir. Several experimental techniques are implemented to examine the effect of treatments on wettability. These include flow displacement tests and oil imbibitions. The experimental work took place in the Wettability Research Lab in Texas A&M University at Qatar in Doha, Qatar. The studies in this area are important to improve the productivity of gas-condensate reservoirs where liquid accumulates, decreasing production of the well. Efficiency in the extraction of natural gas is important for the economic and environmental considerations of the oil and gas industry. Wettability alteration is one of the newest stimulation methods proposed by researchers, and shows great potential for future research and field applications.
15

Development of a successful chemical treatment of gas wells with condensate or water blocking damage

Bang, Vishal, 1980- 29 August 2008 (has links)
During production from gas condensate reservoirs, significant productivity loss occurs after the pressure near the production wells drops below the dew point of the hydrocarbon fluid. Several methods such as gas recycling, hydraulic fracturing and solvent injection have been tried to restore gas production rates after a decline in well productivity owing to condensate and/or water blocking. These methods of well stimulation offer only temporary productivity restoration and cannot always be used for a variety of reasons. Significant advances have been made during this study to develop and extend a chemical treatment to reduce the damage caused by liquid (condensate + water) blocking in gas condensate reservoirs. The chemical treatment alters the wettability of water-wet sandstone rocks to neutral wet, and thus reduces the residual liquid saturations and increases gas relative permeability. The treatment also increases the mobility and recovery of condensate from the reservoir. A nonionic polymeric fluoro-surfactant in a glycol-alcohol solvent mixture improved the gas and condensate relative permeabilities by a factor of about 2 on various outcrop and reservoir sandstone rocks. The improvement in relative permeability after chemical treatment was quantified by performing high pressure and high temperature coreflood experiments on outcrop and reservoir cores using synthetic gas mixtures at reservoir conditions. The durability of the chemical treatment has been tested by flowing a large volume of gas-condensate fluids for a long period of time. Solvents used to dissolve and deliver the surfactant play an important part in the treatment, especially in the presence of high water saturation or high salinity brine. A screening test based on phase behavior studies of treatment solutions and brines has been used to select appropriate mixtures of solvents based on reservoir conditions. The adsorption of the surfactant on the rock surface has been measured by measuring the concentration of the surfactant in the effluent. Wettability of treated and untreated reservoir rocks has been analyzed by measuring the USBM and Amott-Harvey wettability indices to evaluate the effect of chemical treatment on wettability. For the first time, chemical treatments have also been shown to remove the damage caused by water blocking in gas wells and for increasing the fracture conductivity and thus productivity of fractured gas-condensate wells. Core flood experiments done on propped fractures show significant improvement in gas and condensate relative permeability due to surface modification of proppants by chemical reatment. Relative permeability measurements have been done on sandstone and limestone cores over a wide range of conditions including high velocities typical of high rate gas wells and corresponding to both high capillary numbers and non-Darcy flow. A new approach has been presented to express relative permeability as a function three non-dimensionless terms; capillary number, modified Reynolds Number and PVT ratio. Numerical simulations using a compositional simulator have been done to better understand and design well treatments as a function of treatment volume and other parameters. Injection of treatment solution and chase gas and the flow back of solvents were simulated. These simulations show that chemical treatments have the potential to greatly increase production with relatively small treatment volumes since only the near-well region blocked by condensate and/or water needs to be treated.
16

Gas condensate damage in hydraulically fractured wells

Adeyeye, Adedeji Ayoola 30 September 2004 (has links)
This project is a research into the effect of gas condensate damage in hydraulically fractured wells. It is the result of a problem encountered in producing a low permeability formation from a well in South Texas owned by the El Paso Production Company. The well was producing a gas condensate reservoir and questions were raised about how much drop in flowing bottomhole pressure below dewpoint would be appropriate. Condensate damage in the hydraulic fracture was expected to be of significant effect. Previous attempts to answer these questions have been from the perspective of a radial model. Condensate builds up in the reservoir as the reservoir pressure drops below the dewpoint pressure. As a result, the gas moving to the wellbore becomes leaner. With respect to the study by El-Banbi and McCain, the gas production rate may stabilize, or possibly increase, after the period of initial decline. This is controlled primarily by the condensate saturation near the wellbore. This current work has a totally different approach. The effects of reservoir depletion are minimized by introduction of an injector well with fluid composition the same as the original reservoir fluid. It also assumes an infinite conductivity hydraulic fracture and uses a linear model. During the research, gas condensate simulations were performed using a commercial simulator (CMG). The results of this research are a step forward in helping to improve the management of gas condensate reservoirs by understanding the mechanics of liquid build-up. It also provides methodology for quantifying the condensate damage that impairs linear flow of gas into the hydraulic fracture.
17

Initial Conditions from Color Glass Condensate

Chen, Guangyao 16 December 2013 (has links)
Nuclei at very high energy, characterized by a saturation scale, can be described by an effective theory of Quantum ChromoDynamics (QCD) called Color Glass Condensates. The earliest phase of the collision of two nuclei is modeled as the collision of two sheets of color glass. The classical field resulting from the collision then decays and equilibrates to a plasma of quarks and gluons. Using a recursive solution of the Yang-Mills equations, we calculate analytic expressions for the gluon field created in ultra-relativistic heavy ion collisions at small times τ. We have worked out explicit solutions for the fields and the energy momentum tensor up to 4^th order in an expansion in τ . We generalize the existing calculations to go beyond the limit of large homogenous nuclei. This allows us to calculate radial and elliptic flow of gluon fields. The resulting transverse and longitudinal structure of the Poynting vector field has a rich phenomenology. Besides the well known radial and elliptic flow in transverse direction, classical quantum chromodynamics predicts a rapidity-odd transverse flow that tilts the fireball for non-central collisions, and it implies a characteristic flow pattern for collisions of non-symmetric systems A + B. The rapidity-odd transverse flow translates into a directed particle flow v_1 which has been observed at RHIC and LHC. The global flow fields in heavy ion collisions could be a powerful check for the validity of classical Yang-Mill dynamics in high energy collisions. We also propose a procedure to calculate the energy momentum tensor of gluon fields on an event-by-event basis. The matching of the initial field energy momentum tensor to viscous hydrodynamic initial conditions is discussed and some preliminary results of a subsequent hydrodynamic evolution are shown. Our results can provide event-by-event initial conditions for hydrodynamic simulations of nuclear collisions that include initial flow and initial shear stress.
18

Bose-Einstein Condensate Wavefunction Reconstruction Through Collisions with Optical Potentials

Ellenor, Christopher William 30 August 2011 (has links)
A new technique for the interferometric measurement of an atomic wavefunction is introduced theoretically, which is able to extract phase and amplitude information in a single measurement. I focus on the application of this technique to the single-particle wavefunction of a Bose condensed cloud of rubidium atoms. The technique differs from existing techniques mainly in its simplicity, as it requires only a single laser beam to be added to a typical Bose-Einstein condensation apparatus. A second novel aspect is the consideration of condensate collisions with an optical potential in the low-intensity limit where the potential barrier may be viewed as a phase mask. The technique is then demonstrated experimentally. A related effect, the transient enhancement of momentum during a collision, first predicted by JG Muga et al., has also been demonstrated. Finally, significant redesign and construction of an apparatus to produce condensates of 87Rb is documented. The main result of this work is the production of pure condensates of up to 150k atoms which can be repeated every 45s. A calibration technique is devised and demonstrated, whereby copies of the condensate are made, and the copies are used to reduce the centre-of-mass momentum uncertainty of the interacting cloud by a factor of five.
19

Bose-Einstein Condensate Wavefunction Reconstruction Through Collisions with Optical Potentials

Ellenor, Christopher William 30 August 2011 (has links)
A new technique for the interferometric measurement of an atomic wavefunction is introduced theoretically, which is able to extract phase and amplitude information in a single measurement. I focus on the application of this technique to the single-particle wavefunction of a Bose condensed cloud of rubidium atoms. The technique differs from existing techniques mainly in its simplicity, as it requires only a single laser beam to be added to a typical Bose-Einstein condensation apparatus. A second novel aspect is the consideration of condensate collisions with an optical potential in the low-intensity limit where the potential barrier may be viewed as a phase mask. The technique is then demonstrated experimentally. A related effect, the transient enhancement of momentum during a collision, first predicted by JG Muga et al., has also been demonstrated. Finally, significant redesign and construction of an apparatus to produce condensates of 87Rb is documented. The main result of this work is the production of pure condensates of up to 150k atoms which can be repeated every 45s. A calibration technique is devised and demonstrated, whereby copies of the condensate are made, and the copies are used to reduce the centre-of-mass momentum uncertainty of the interacting cloud by a factor of five.
20

Production Optimization Of A Gas Condensate Reservoir Using A Black Oil Simulator And Nodal System Analysis:a Case Study

Mindek, Cem 01 June 2005 (has links) (PDF)
In a natural gas field, determining the life of the field and deciding the best production technique, meeting the economical considerations is the most important criterion. In this study, a field in Thrace Basin was chosen. Available reservoir data was compiled to figure out the characteristics of the field. The data, then, formatted to be used in the commercial simulator, IMEX, a subprogram of CMG (Computer Modeling Group). The data derived from the reservoir data, used to perform a history match between the field production data and the results of the simulator for a 3 year period between May 2002 and January 2005. After obtaining satisfactory history matching, it was used as a base for future scenarios. Four new scenarios were designed and run to predict future production of the field. Two new wells were defined for the scenarios after determining the best region in history matching. Scenario 1 continues production with existing wells, Scenario 2 includes a new well called W6, Scenario 3 includes another new well, W7 and Scenario 4 includes both new defined wells, W6 and W7. All the scenarios were allowed to continue until 2010 unless the wellhead pressure drops to 500 psi. None of the existing wells reached 2010 but newly defined wells achieved to be on production in 2010. After comparing all scenarios, Scenario 4, production with two new defined wells, W6 and W7, was found to give best performance until 2010. During the scenario 4, between January 2005 and January 2010, 7,632 MMscf gas was produced. The total gas production is 372 MMscf more than Scenario 2, the second best scenario which has a total production of 7,311MMscf. Scenario 3 had 7,260 MMscf and Scenario 1 had 6,821 MMscf respectively. A nodal system analysis is performed in order to see whether the initial flow rates of the wells are close to the optimum flow rates of the wells, Well 1 is found to have 6.9 MMscf/d optimum production rate. W2 has 3.2 MMscf/d, W3 has 8.3 MMscf/d, W4 has 4.8 MMscf/d and W5 has 0.95 MMscf/d optimum production rates respectively.

Page generated in 0.2862 seconds