• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Process simulation and assessment of a back-up condensate stabilization unit

Rahmanian, Nejat, Bin Ilias, I., Nasrifar, K. 06 July 2015 (has links)
Yes / A simulation was conducted using Aspen HYSYS® software for an industrial scale condensate stabilization unit and the results of the product composition from the simulation were compared with the plant data. The results were also compared to the results obtained using PRO/II software. The results show that the simulation is in good agreement with the plant data, especially for medium range hydrocarbons. For hydrocarbons lighter than C5, the simulation results over predict the plant data while for hydrocarbons heavier than C9 this trend is reversed. The influences of steam temperature and pressure, as well as feed conditions (flow rate, temperature and pressure) for the product specification (RVP and sulphur content) were also investigated. It was reported that the operating conditions gave rise to the production of off-specification condensate and it was also found that the unit could be utilized within 40–110% of its normal throughput without altering equipment sizing and by the operating parameters.
2

Steam consumption minimization using genetic algorithm optimization method: an industrial case study

Alabdulkarem, A., Rahmanian, Nejat 13 May 2020 (has links)
yes / Condensate stabilization is a process where hydrocarbon condensate recovered from natural gas reservoirs is processed to meet the required storage, transportation, and export specifications. The process involves stabilizing of hydrocarbon liquid by separation of light hydrocarbon such as methane from the heavier hydrocarbon constituents such as propane. An industrial scale back-up condensate stabilization unit was simulated using Aspen HYSYS software and validated with the plant data. The separation process consumes significant amount of energy in form of steam. The objectives of the paper are to find the minimum steam consumption of the process and conduct sensitivity and exergy analyses on the process. The minimum steam consumption was found using genetic algorithm optimization method for both winter and summer conditions. The optimization was carried out using MATLAB software coupled with Aspen HYSYS software. The optimization involves six design variables and four constraints, such that realistic results are achieved. The results of the optimization show that savings in steam consumption is 34% as compared to the baseline process while maintaining the desired specifications. The effect of natural gas feed temperature has been investigated. The results show that steam consumption is reduced by 46% when the natural gas feed temperature changes from 17.7 to 32.7°C. Exergy analysis shows that exergy destruction of the optimized process is 37% less than the baseline process.

Page generated in 0.196 seconds