• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling and simulation of two-phase closed thermosyphones using two-fluid method

Kafeel, Khurram January 2014 (has links)
Computational Fluid Dynamics (CFD) has become one of the main instruments for the prediction of many commercial and research oriented fluid flow and heat transfer problems. While single phase flow analysis through CFD has gained grounds within the commercial industry, multiphase flow analysis is still the subject of further research and development. Heat Pipes and thermosyphones are no exception to this. However, the involvement of more than one fluid phase within these devices has made their analysis through CFD more challenging and computationally more demanding to perform. In this thesis, computational fluid dynamics is used as a modelling tool in order to predict the thermal hydraulic behaviour of multiphase environment within thermosyphones and heat pipes. Eulerian two-fluid method is used to solve the conservation equations for mass, momentum and energy, for each phase along with the inclusion of interfacial heat and mass transfer terms. Numerical predictions are obtained for the steady-state and transient operation of stationary thermosyphon, while rotating heat pipes operation is also simulated using axially and radially rotating heat pipe models. Apart from using the commercially available CFD code for the analysis of thermosyphones related simulation, numerical work is performed regarding the coupling of momentum equations based on Eulerian two-fluid modelling scheme. OPENFOAM open source code is used and modified to include the Partial Elimination Algorithm (PEA) for the coupling of interfacial exchange terms, including interfacial mass transfer term, in the momentum equations of both phases. Results obtained from above discussed studies provide good agreement with corresponding experimental and analytical observations.
2

Modélisation hybride et multi-échelle pour la simulation des écoulements et des transferts thermiques dans les micro-canaux / Hybrid and multi-scale modeling for the simulation of fluid flows and heat transfer in microchannels

Vu, Van Huyen 13 December 2016 (has links)
L'objectif de cette thèse est de mettre en œuvre une description multi-échelle adaptée aux écoulements de fluides dans des micro-/nano-conduites. Cette approche doit permettre de décrire, aussi bien les petites échelles relatives aux interactions du fluide avec les atomes du mur, que les grandes échelles de l’écoulement engendrées par les conditions aux limites d'entrée/sortie du canal. Pour cela, nous avons développé une méthode qui couple une modélisation continue des écoulements et des transferts de chaleur dans le cœur du canal avec une modélisation discrète proche des parois, basée sur une représentation atomistique du fluide et du mur.Les équations de Navier-Stokes et de l’énergie, couplées à une équation d’état, sont approximées par une méthode de volumes finis dans le cœur de l’écoulement alors que des simulations de dynamique moléculaire sont utilisées pour représenter finement les interactions entre le fluide et la paroi. Cette approche hybride nécessite la transmission d’informations entre les modélisations : les grandeurs moyennées moléculaires sont imposées comme conditions aux limites pour le modèle continu, et la dynamique sous contrainte, couplée à un thermostat de Langevin, est utilisée pour piloter l’échelle moléculaire. Une représentation par des plots moléculaires locaux de petite taille, intelligemment répartis le long de l’interface entre le fluide et le mur, permet de traiter des écoulements et des transferts dans des canaux de très grands allongements, pour des coûts de calcul raisonnables.Après une partie de validation, des simulations hybrides multi-échelles d’écoulements dans des canaux constitués de parois en platine ont été menées pour de l’argon en phase liquide (incompressible) ou gazeuse (compressible), en tenant compte éventuellement du changement de phase au voisinage de la paroi / The main objective of this thesis is to model the multi-scale heat and fluid flows in micro-/nano channels. This method must be able of capturing at the same time the fluid/solid interaction at the small scale but also the flows induced by the inlet/outlet boundary conditions at the large scale. To this aim, we have adopted an approach coupling the continuum model in the bulks of the channel and the discrete model at the vicinity of the wall, based on an atomistic representation of the fluid and the solid.The Navier-Stokes and energy equations, coupled with an equation of state, are approximated by a finite volume method and the molecular dynamics simulations are used to finely represent the interaction between the fluid and the solid. This hybrid method requires information transmission between the former two regions: averaged quantity in molecular dynamics simulations are imposed as boundary conditions for the continuous model and constrained dynamics, coupled with a thermostat Langevin, is used to control in the molecular level. A set of small molecular dynamics blocks, smartly distributed all along the wall/fluid interface, allows to treat flow and heat transfers in a long micro/nano-channel with a reasonable computational cost.After a validation step, the hybrid multi-scale simulations of complex fluid flows in the channel composed of the platinum wall have been conducted for argon in incompressible liquid or compressible gaseous phase with and without phase change in the vicinity of the wall

Page generated in 0.1599 seconds