• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 1
  • Tagged with
  • 15
  • 15
  • 15
  • 15
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Metallophthalocyanine Optical Properties Dependence on Grain Size

Fry, Taylor D. 13 November 2018 (has links)
<p> Vacuum sublimated thin films of metallophthalocyanines (where metal = Cu, Fe, Zn, and Mn) and metal-free phthalocyanine were prepared at different deposition temperatures. The optical properties have been studied in the wavelength range of 340 nm to 2500 nm for samples deposited at room temperature up to 250 &deg;C. Atomic force microscopy was used to obtain images of the surface morphology. Absorption coefficient spectra obtained verify the &pi; to &pi;* transition in the region 526 nm to 735 nm for the Q band, throughout all samples studied. The independence of deposition temperature or grain size in peak positions in absorption coefficient throughout all samples has been shown. The ratio of intensity of the two absorption coefficient peaks in the Q band has been calculated, showing a change in MnPc intensity ratio with changing deposition temperature. The intensity of the highest peak in the Q band has been compared for different metallophthalocyanines and across different deposition temperatures. CuPc deposited at 250 &deg;C has been shown to have the highest peak magnitude of absorption coefficient, with a value of 3.9&times;10<sup> 5</sup> cm<sup>&ndash;1</sup>.</p><p>
12

In situ investigation of photoinduced effects in arsenic-selenium glass films by x-ray photoelectron spectroscopy (XPS) and optical spectroscopy.

Antoine, Keisha. January 2007 (has links)
Thesis (Ph.D.)--Lehigh University, 2007. / Adviser: Himanshu Jain.
13

Polarization engineering and approaches for high-performance III-nitride light emitters.

Arif, Ronald A. January 2008 (has links)
Thesis (P.D.)--Lehigh University, 2008. / Adviser: Nelson Tansu.
14

Excimer laser-induced crystallization of amorphous cadmium selenide thin films.

Shaffer, Etienne. Unknown Date (has links)
Thèse (M.Sc.A.)--Université de Sherbrooke (Canada), 2007. / Titre de l'écran-titre (visionné le 1 février 2007). In ProQuest dissertations and theses. Publié aussi en version papier.
15

Time resolved single molecule spectroscopy of semiconductor quantum dot/conjugated organic hybrid nanostructures

Odoi, Michael Yemoh 01 January 2010 (has links)
Single molecule studies on CdSe quantum dots functionalized with oligo-phenylene vinylene ligands (CdSe-OPV) provide evidence of strong electronic communication that facilitate charge and energy transport between the OPV ligands and the CdSe quantum dot core. This electronic interaction greatly modify, the photoluminescence properties of both bulk and single CdSe-OPV nanostructure thin film samples. Size-correlated wide-field fluorescence imaging show that blinking suppression in single CdSe-OPV is linked to the degree of OPV coverage (inferred from AFM height scans) on the quantum dot surface. The effect of the complex electronic environment presented by photoexcited OPV ligands on the excited state property of CdSe-OPV is measured with single photon counting and photon-pair correlation spectroscopy techniques. Time-tagged-time-resolved (TTTR) single photon counting measurements from individual CdSe-OPV nanostructures, show excited state lifetimes an order of magnitude shorter relative to conventional ZnS/CdSe quantum dots. Second-order intensity correlation measurements g(2)(τ) from individual CdSe-OPV nanostructures point to a weak multi-excitonic character with a strong wavelength dependent modulation depth. By tuning in and out of the absorption of the OPV ligands we observe changes in modulation depth from g(2) (0) ≈ 0.2 to 0.05 under 405 and 514 nm excitation respectively. Defocused images and polarization anisotropy measurements also reveal a well-defined linear dipole emission pattern in single CdSe-OPV nanostructures. These results provide new insights into to the mechanism behind the electronic interactions in composite quantum dot/conjugated organic composite systems at the single molecule level. The observed intensity flickering , blinking suppression and associated lifetime/count rate and antibunching behaviour is well explained by a Stark interaction model. Charge transfer from photo-excitation of the OPV ligands to the surface of the CdSe quantum dot core, mixes electron/holes states and lifts the degeneracy in the band edge bright exciton state, which induces a well define linear dipole behaviour in single CdSe-OPV nanostructures. The shift in the electron energies also affects Auger assisted hole trapping rates, suppress access to dark states and reduce the excited state lifetime.

Page generated in 0.1097 seconds