• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 845
  • 82
  • 77
  • 10
  • 4
  • 4
  • 1
  • 1
  • Tagged with
  • 1334
  • 1334
  • 1334
  • 260
  • 256
  • 255
  • 247
  • 212
  • 187
  • 164
  • 128
  • 116
  • 115
  • 112
  • 108
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Controlling Atomic, Solid-State and Hybrid Systems for Quantum Information Processing

Gullans, Michael John 10 April 2014 (has links)
Quantum information science involves the use of precise control over quantum systems to explore new technologies. However, as quantum systems are scaled up they require an ever deeper understanding of many-body physics to achieve the required degree of control. Current experiments are entering a regime which requires active control of a mesoscopic number of coupled quantum systems or quantum bits (qubits). This thesis describes several approaches to this goal and shows how mesoscopic quantum systems can be controlled and utilized for quantum information tasks. / Physics
252

Low Dimensional Carbon Electronics

Herring, Patrick Kenichi 06 June 2014 (has links)
This thesis covers several different experiments that comprised my graduate career. The main focus of these experiments was the use of carbon as an electronic material and a steady evolution of fabrication recipes that allowed us to perform reliable and consistent measurements. The second chapter describes experiments with carbon nanotubes, where our goal was to produce devices capable of manipulating electronic spin states in order create quantum bits or "qubits." The third chapter covers the development of fabrication recipes with the goal of creating qubits within Si-Ge nanowire, and the bottom-gating approach that was developed. The fourth chapter begins graphene related research, describing one of the simplest uses of graphene as a simple transparent electrode on a SiN micromembrane. The remainder of the thesis describes experiments that develop graphene based optical and infrared detectors, study their characteristics and determine the physics that underlies their detection mechanism. Key in these experiments were the fabrication recipes that had been developed to create carbon nanotube and Si-Ge nanowire devices. Finally, we demonstrate how engineering of the device's thermal characteristics can lead to improved sensitivity and how graphene can be used in novel applications where conventional materials are not suitable. / Physics
253

Ab initio Studies of Indium Clustering on the Ge(111)-5x5 Surface

Psiachos, Demetra 29 October 2007 (has links)
This thesis reports an \textit{ab initio} study of the Ge(111)-5$\times$5 reconstruction, which forms on top of a Si(111)-7$\times$7 substrate. Detailed descriptions of the structural and electronic properties of this surface, obtained from density-functional calculations, are presented and analyzed. A study of In clusters on this surface is performed, and compared with recent experimental work on this system. The effect of surface strain as well as the issue of the Si-Ge interface is addressed. Also, a preliminary investigation of some dynamical aspects of an In atom on the 5$\times$5 surface is presented. / Thesis (Ph.D, Physics, Engineering Physics and Astronomy) -- Queen's University, 2007-10-26 14:14:48.513 / NSERC HPCVL WestGrid
254

Dynamical conductivity of strongly correlated electron systems at oxide interfaces

Ouellette, Daniel Gerald 10 January 2014 (has links)
<p> The Mott metal-insulator transition (MIT) in transition-metal complex oxides results from strong electron-electron interactions and is accompanied by a rich spectrum of phenomena, including magnetic, charge, and orbital ordering, superconductivity, structural distortions, polarons, and very high-density 2-dimensional interface electron liquids. Recent advances in oxide heteroepitaxy allow interface control as a promising new approach to tuning the exotic properties of materials near the quantum critical point, with potential application to technologies including phase-change electronics, high power transistors, and sensors. The dynamical conductivity of oxide heterostructures is measured using a combination of terahertz time-domain spectroscopy, Fourier transform infrared spectroscopy, and dc magnetotransport. The rare-earth nickelates <i> R</i>NiO<sub>3</sub> (<i>R</i> = La, Nd...) exhibit a temperature and bandwidth controlled MIT in bulk. Measurements of the Drude response in epitaxial thin films provide quantification of the strain-dependent mass enhancement in the metallic phase due to strong correlations. Reduction of LaNiO<sub> 3</sub> film thickness leads to additional mass renormalization attributed to structural distortions at the heteroepitaxial interface, and an MIT is observed depending on the interfacing materials in coherent perovskite heterostructures. The rare-earth titanates <i>R</i>TiO<sub>3</sub> exhibit a bandwidth and band filling controlled Mott MIT. Furthermore, the heterointerface between Mott insulating GdTiO<sub>3</sub> and band insulating SrTiO<sub>3</sub> exhibits a 2-dimensional itinerant electron liquid, with extremely high sheet densities of 3 &times; 10<sup>14</sup> cm<sup>-2</sup>. The dynamical conductivity of the interface electrons is analyzed in terms of subband-dependent electron mobility and the established large polaron dynamics in bulk SrTiO<sub>3</sub>. Additional confinement of the electron liquids is achieved by decreasing the SrTiO<sub>3</sub> layer thickness, with attendant increase in the dynamical mass. Taking the confinement to its extreme limit, a single (GdO)<sup> +</sup> plane in Mott insulating GdTiO<sub>3</sub> is replaced with a (SrO)<sup> 0</sup> plane. This is equivalent to "delta-doping" the Mott insulator with an extremely high density sheet of holes. The transport and absorption in the resulting two-dimensional insulator are consistent with a simple model of small polaron hopping. A comparison is made to similar features in the conductivity of randomly doped Sr<sub>1-x</sub>Gd<sub>x</sub>TiO<sub>3</sub> films.</p>
255

The Structure and Dynamics of Monatomic Liquid Polymorphs; Case Studies in Cerium and Germanium

Cadien, Adam 11 July 2015 (has links)
<p> The study of liquid polymorphism is at the frontier of fundamental thermodynamics and materials science. Liquid polymorphism occurs when a single material has multiple structurally unique liquid phases. Water was the first substance suggested to exhibit multiple liquid phases, a number of monatomic semiconductors and metals have been found to exhibit similar characteristics since then. A better understanding of the liquid-liquid phase transition is needed to tackle problems in glass sciences, it is also relevant to geophysical studies of the Earth's core and mantle and has applications in nanotechnology. </p><p> Computational methods are critical to developing a better understanding of liquids. Through simulation thermodynamic obstacles that hamper experiments can be artificially bypassed, metastable regions outside the equilibrium phase diagram can be accessed and all of the properties of the system are directly recorded. Computationally it is much simpler to iterate over a range of environmental variables such as temperature, pressure and composition, and measure a system's response. In this thesis ab-initio and semi-empirical approximations are used to accurately describe the complex many body interactions that take place in liquids. </p><p> Two independent case studies of liquid polymorphism are presented here. The first is a stable liquid-liquid phase transition was found to occur in Cerium which was initially discovered through X-Ray diffraction experiments and later confirmed through simulation. This phase transition is predicted to end at a critical point. </p><p> The second is a comprehensive study of the structure and dynamics of Germanium's many metastable amorphous and liquid phases. This is currently the largest ab-initio based study of the dynamics of Germanium's metastable liquid phases. Methods ranging from the mean square displacement to the van Hove function and intermediate scattering function are introduced and analyzed. The micro-structural characteristics are quantified and correlated with the mobility in the material revealing dynamical heterogeneity.</p>
256

Electrical Characterization of Silicon Cores from Glass-Cladded Fibres

Lapointe, Kyle January 2014 (has links)
Semiconductor core fibres represent an emerging technology with potential applications in many areas, including photovoltaics and optical transmission. Recent advances in fibre manufacturing techniques has allowed long, continuous silicon core fibres to be produced in commercial draw towers. The effect of the molten core fibre fabrication method on the electrical properties of silicon cores from glass-clad fibres have been studied. Fibres with core diameters ranging from 60 to 300 &#181;m were produced using a CaO interface modifier between the core and cladding. Five silicon material types with increasing phosphorus doping levels were analysed before and after the drawing process using four point probe technique, supplemented with microscopy and compositional analysis. Novel techniques for preparing and measuring fibre samples were developed, which is suitable for a range of fibre diameters. Cores produced from lightly doped materials showed a large increase in conductivity, while cores produced from a relatively highly doped material showed a small decrease in conductivity. The results suggest that the manufacturing process has introduced significant amount of impurities to the silicon core, which corresponds to additional charge carriers.
257

Mesoscopic phenomena in hybrid superconductor/ferromagnet structures

Golod, Taras January 2011 (has links)
This thesis explores peculiar effects of mesoscopic structures revealed at low temperatures. Three particular systems are studied experimentally: Ferromagnetic thin films made of diluted Pt1-xNix alloy, hybrid nanoscale Nb-Pt1-xNix-Nb Josephson junctions, and planar niobium Josephson junction with barrier layer made of Cu or Cu0.47Ni0.53 alloy. A cost-effective way is applied to fabricate the sputtered NixPt1-x thin films with controllable Ni concentration. 3D Focused Ion Beam (FIB) sculpturing is used to fabricate Nb-Pt1-xNix-Nb Josephson junctions. The planar junctions are made by cutting Cu-Nb or CuNi-Nb double layer by FIB. Magnetic properties of PtNi thin films are studied via the Hall effect. It is found that films with sub-critical Ni concentration are superparamagnetic at low temperatures and exhibit perpendicular magnetic anisotropy. Films with over-critical Ni concentration are ferromagnetic with parallel anisotropy. At the critical concentration the films demonstrate canted magnetization with the easy axis rotating as a function of temperature. The magnetism appears via two consecutive crossovers, going from paramagnetic to superparamagnetic to ferromagnetic, and the extraordinary Hall effect changes sign at low temperatures. Detailed studies of superconductor-ferromagnet-superconductor Josephson junctions are carried out depending on the size of junction, thickness and composition of the ferromagnetic layer. The junction critical current density decreases non-monotonically with increasing Ni concentration. It has a minimum at ~ 40 at.% of Ni which indicates a switching into the π state. The fabricated junctions are used as phase sensitive detectors for analysis of vortex states in mesoscopic superconductors. It is found that the vortex induces different flux shifts, in the measured Fraunhofer modulation of the Josephson critical current, depending on the position of the vortex. When the vortex is close to the junction it induces a flux shift equal to Φ0/2 leading to switching of the junction into the 0-π state. By changing the bias current at constant magnetic field the vortices can be manipulated and the system can be switched between two consecutive vortex states. A mesoscopic superconductor can thus act as a memory cell in which the junction is used both for reading and writing information (vortex).
258

Synthesis and properties of single luminescent silicon quantum dots

Sychugov, Ilya January 2006 (has links)
Silicon is an ubiquitous electronic material and the discovery of strong room temperature luminescence from porous Si in 1990 raised hopes it may find a new lease of life in the emerging field of optoelectronics. First, the luminescence was shown to be emitted from nanostructures remained in a porous Si network. Later the same emission was shown from Si nanocrystals and the concept of a Si quantum dot emerged. Yet a number of different models have been proposed for the origin of light emission. Some involved interface states between a Si nanocrystal and the surrounding shell, while others considered the effect of quantum confinement in an indirect bandgap semiconductor. In this work a single Si nanocrystal was addressed to shed light on the mechanism of luminescence. Nanocrystals were prepared using e-beam lithography with subsequent etching and oxidation of silicon nanopillars. In particular, the non-uniform oxidation in self-limiting regime was successfully used to form a single nanocrystal inside nanopillars. This preparation method allowed optical probing of a single nanocrystal with far-field optics. Results revealed sharp luminescence spectra at low temperatures with a linewidth less than the corresponding thermal broadening. This property is a signature of energy level discreetness, which is, in turn, a straightforward consequence of the quantum confinement model. Another effect observed was a random on-off blinking, which is also regarded as a hallmark of single fluorescent objects. This effect appeared to be dependent on the excitation power density suggesting the involvement of Auger-assisted ionization in the dynamics of nanocrystal luminescence. In addition, it was shown how a change in the optical mode density affects the main parameters of luminescence from Si nanocrystals, such as the radiative lifetime, the quantum efficiency and the total yield. Finally, in order to clarify the influence of morphological properties, such as size or shape, of a Si quantum dot on its luminescence, combined low-temperature photoluminescence and transmission electron microscopy investigations were initiated. A method was developed using focused ion beam preparation for such a joint characterization. To conclude, the work gives support to the quantum confinement effect in explaining the light emission mechanism from nano-sized Si, as well as highlights the importance of morphological structure in the luminescence process. / QC 20100922
259

The neutronic design and performance of the Indiana University Cyclotron Facility (IUCF) Low Energy Neutron Source (LENS)

Lavelle, Christopher M., January 2007 (has links)
Thesis (Ph.D.)--Indiana University, Dept. of Physics, 2007. / Title from PDF t.p. (viewed Nov. 20, 2008). Source: Dissertation Abstracts International, Volume: 68-03, Section: B, page: 1688. Adviser: David V. Baxter.
260

Non-extensive statistics and high temperature superconductivity /

Uys, Hermann. January 2001 (has links)
Thesis (M.Sc.(Physics))--University of Pretoria, 2001. / Summaries in Afrikaans and English. Includes bibliographical references (p. 41-46). Also available online.

Page generated in 0.1106 seconds