Spelling suggestions: "subject:"condenser coal"" "subject:"condenser col""
1 |
The air cooled condenser optimizationSquicciarini, Martin January 1900 (has links)
Master of Science / Department of Mechanical and Nuclear Engineering / Donald L. Fenton / Today air cooled chillers are often used in industrial applications where chilled water is pumped through processes or laboratory equipment. Industrial chillers are used for the controlled cooling of products, mechanisms and factory machinery in a wide range of industries. However, there is limited information on condenser coil design for a simulated model that uses R407c in a process chiller system with a focus on the finned tube condenser design. Therefore, a simulation tool that evaluates the performance of a condenser design, e.g. frontal area, cost, and overall system efficiency would be very useful.
An optimization calculator for the air cooled fin-tube condenser design was developed. This calculator allows a user to specifically select the condenser geometric design parameters including the overall condenser length and height, number of rows, number of circuits, row and tube spacing, fin thickness, fin density, tube inner and outer diameters, and the quantity and power of the fan motors. This study applied the calculator finding an optimum condenser design for various frontal areas and cost constraints. The calculator developed is appropriate for engineering designers for use in the process chiller industry.
|
2 |
Effects of system cycling, evaporator airflow, and condenser coil fouling on the performance of residential split-system air conditionersDooley, Jeffrey Brandon 17 February 2005 (has links)
Three experimental studies were conducted to quantify the effects of system
cycling, evaporator airflow, and condenser coil fouling on the performance of residential
air conditioners. For all studies, the indoor dry-bulb (db) temperature was 80°F (26.7°C)
db. The cycling study consisted of twelve transient tests conducted with an outdoor
temperature of 95°F (35°C) db for cycle times of 6, 10, 15, and 24 minutes. Indoor
relative humidities of 40%, 50%, and 60% were also considered. The evaporator airflow
study consisted of twenty-four steady-state tests conducted with an indoor condition of
67°F (19.4°C) wet-bulb (wb) for evaporator airflows ranging from 50% below to 37.5%
above rated airflow. Outdoor temperatures of 85°F (29.4°C) db, 95°F (35°C) db, and
105°F (40.6°C) db were also considered. The coil fouling study used a total of six
condensers that were exposed to an outdoor environment for predetermined amounts of
time and tested periodically. Three of the condensers were cleaned and retested during
the periodic testing cycles. Testing consisted of thirty-three steady-state tests conducted
with an indoor condition of 67°F (19.4°C) wb for outdoor exposure times of 0, 2000,
4000, and 8000 hours. Outdoor temperatures of 82°F (27.8°C) db and 95°F (35°C) db
were also considered.
|
Page generated in 0.0785 seconds