Spelling suggestions: "subject:"conditional fandom dields (CRF)"" "subject:"conditional fandom acfields (CRF)""
1 |
An Enhanced Conditional Random Field Model for Chinese Word SegmentationHuang, Jhao-ming 03 February 2010 (has links)
In Chinese language, the smallest meaningful unit is a word which is composed of a sequence
of characters. A Chinese sentence is composed of a sequence of words without any separation
between them. In the area of information retrieval or data mining, the segmentation of a
sequence of Chinese characters should be done before anyone starts to use these segments of
characters. The process is called the Chinese word segmentation. The researches of Chinese
word segmentation have been developed for many years. Although some recent researches
have achieved very high performance, the recall of those words that are not in the dictionary
only achieves sixty or seventy percent. An approach described in this paper makes use of the
linear-chain conditional random fields (CRFs) to have a more accurate Chinese word segmentation.
The discriminatively trained model that uses two of our proposed feature templates for
deciding the boundaries between characters is used in our study. We also propose three other
methods, which are the duplicate word repartition, the date representation repartition, and the segment refinement, to enhance the accuracy of the processed segments. In the experiments, we use several different approaches for testing and compare the results with those proposed by Li et al. and Lau and King based on three different Chinese word corpora. The results prove that the improved feature template which makes use of the information of prefix and postfix
could increase both the recall and the precision. For example, the F-measure reaches 0.964 in the MSR dataset. By detecting repeat characters, the duplicated characters could also be better repartitioned without using extra resources. In the representation of date, the wrongly segmented date could be better repartitioned by using the proposed method which deals with numbers, date, and measure words. If a word is segmented differently from that of the corresponding standard segmentation corpus, a proper segment could be produced by repartitioning the assembled segment which is composed of the current segment and the adjacent segment.
In the area of using the conditional random fields for Chinese word segmentation, we have
proposed a feature template for better result and three methods which focus on other specific
segmentation problems.
|
2 |
On conditional random fields: applications, feature selection, parameter estimation and hierarchical modellingTran, The Truyen January 2008 (has links)
There has been a growing interest in stochastic modelling and learning with complex data, whose elements are structured and interdependent. One of the most successful methods to model data dependencies is graphical models, which is a combination of graph theory and probability theory. This thesis focuses on a special type of graphical models known as Conditional Random Fields (CRFs) (Lafferty et al., 2001), in which the output state spaces, when conditioned on some observational input data, are represented by undirected graphical models. The contributions of thesis involve both (a) broadening the current applicability of CRFs in the real world and (b) deepening the understanding of theoretical aspects of CRFs. On the application side, we empirically investigate the applications of CRFs in two real world settings. The first application is on a novel domain of Vietnamese accent restoration, in which we need to restore accents of an accent-less Vietnamese sentence. Experiments on half a million sentences of news articles show that the CRF-based approach is highly accurate. In the second application, we develop a new CRF-based movie recommendation system called Preference Network (PN). The PN jointly integrates various sources of domain knowledge into a large and densely connected Markov network. We obtained competitive results against well-established methods in the recommendation field. / On the theory side, the thesis addresses three important theoretical issues of CRFs: feature selection, parameter estimation and modelling recursive sequential data. These issues are all addressed under a general setting of partial supervision in that training labels are not fully available. For feature selection, we introduce a novel learning algorithm called AdaBoost.CRF that incrementally selects features out of a large feature pool as learning proceeds. AdaBoost.CRF is an extension of the standard boosting methodology to structured and partially observed data. We demonstrate that the AdaBoost.CRF is able to eliminate irrelevant features and as a result, returns a very compact feature set without significant loss of accuracy. Parameter estimation of CRFs is generally intractable in arbitrary network structures. This thesis contributes to this area by proposing a learning method called AdaBoost.MRF (which stands for AdaBoosted Markov Random Forests). As learning proceeds AdaBoost.MRF incrementally builds a tree ensemble (a forest) that cover the original network by selecting the best spanning tree at a time. As a result, we can approximately learn many rich classes of CRFs in linear time. The third theoretical work is on modelling recursive, sequential data in that each level of resolution is a Markov sequence, where each state in the sequence is also a Markov sequence at the finer grain. One of the key contributions of this thesis is Hierarchical Conditional Random Fields (HCRF), which is an extension to the currently popular sequential CRF and the recent semi-Markov CRF (Sarawagi and Cohen, 2004). Unlike previous CRF work, the HCRF does not assume any fixed graphical structures. / Rather, it treats structure as an uncertain aspect and it can estimate the structure automatically from the data. The HCRF is motivated by Hierarchical Hidden Markov Model (HHMM) (Fine et al., 1998). Importantly, the thesis shows that the HHMM is a special case of HCRF with slight modification, and the semi-Markov CRF is essentially a flat version of the HCRF. Central to our contribution in HCRF is a polynomial-time algorithm based on the Asymmetric Inside Outside (AIO) family developed in (Bui et al., 2004) for learning and inference. Another important contribution is to extend the AIO family to address learning with missing data and inference under partially observed labels. We also derive methods to deal with practical concerns associated with the AIO family, including numerical overflow and cubic-time complexity. Finally, we demonstrate good performance of HCRF against rivals on two applications: indoor video surveillance and noun-phrase chunking.
|
3 |
Identification de opiniónes de differentes fuentes en textos en español / Identification d'opinions issues de diverses sources dans des textes en espagnol / Identification of opinions from different sources in Spanish textsRosá, Aiala 28 September 2011 (has links)
Ce travail présente une étude linguistique des expressions d'opinions issues de différentes sources dans des textes en espagnol. Le travail comprend la définition d'un modèle pour les prédicats d'opinion et leurs arguments (la source, le sujet et le message), la création d'un lexique de prédicats d'opinions auxquels sont associées des informations provenant du modèle et la réalisation de trois systèmes informatiques.Le premier système, basé sur des règles contextuelles, obtient de bons résultats pour le score de F-mesure partielle: prédicat, 92%; source, 81%; sujet, 75%; message, 89%, opinion, 85%. En outre, l'identification de la source donne une valeur de 79% de F-mesure exacte. Le deuxième système, basé sur le modèle Conditional Random Fields (CRF), a été développé uniquement pour l'identification des sources, donnant une valeur de 76% de F-mesure exacte. Le troisième système, qui combine les deux techniques (règles et CRF), donne une valeur de 83% de F-mesure exacte, montrant ainsi que la combinaison permet d'obtenir des résultats intéressants.En ce qui concerne l'identification des sources, notre système, comparé à des travaux réalisés sur des corpus d'autres langues que l'espagnol, donne des résultats très satisfaisants. En effet ces différents travaux obtiennent des scores qui se situent entre 63% et 89,5%.Par ailleurs, en sus des systèmes réalisés pour l'identification de l'opinion, notre travail a débouché sur la construction de plusieurs ressources pour l'espagnol : un lexique de prédicats d'opinions, un corpus de 13000 mots avec des annotations sur les opinions et un corpus de 40000 mots avec des annotations sur les prédicats d'opinion et les sources. / This work presents a study of linguistic expressions of opinion from different sources in Spanish texts. The work includes the definition of a model for opinion predicates and their arguments (source, topic and message), the creation of a lexicon of opinion predicates which have information from the model associated, and the implementation of three systems.The first system, based on contextual rules, gets good results for the F-measure score (partial match): predicate, 92%; source, 81%; topic, 75%; message, 89%; full opinion, 85%. In addition, for source identification the F-measure for exact match is 79%. The second system, based on Conditional Random Fields (CRF), was developed only for the identification of sources, giving 76% of F-measure (exact match). The third system, which combines the two techniques (rules and CRF), gives a value of 83% of F-measure (exact match), showing that the combination yields interesting results.As regards the identification of sources, our system compared to other work developed for languages other than Spanish, gives very satisfactory results. Indeed these works had scores that fall between 63% and 89.5%.Moreover, in addition to the systems made for the identification of opinions, our work has led to the construction of several resources for Spanish: a lexicon of opinion predicates, a 13,000 words corpus with opinions annotated and a 40,000 words corpus with opinion predicates end sources annotated.
|
Page generated in 0.104 seconds