Spelling suggestions: "subject:"conditional law"" "subject:"konditional law""
1 |
Prévision non paramétrique dans les modèles de censure via l'estimation du quantile conditionnel en dimension infinie / Nonparametric prediction in censorship models via the estimation of the conditional quantile in infinite dimensionHorrigue, Walid 12 December 2012 (has links)
Dans cette thèse, nous étudions les propriétés asymptotiques de paramètres fonctionnels conditionnels en statistique non paramétrique, quand la variable explicative prend ses valeurs dans un espace de dimension infinie. Dans ce cadre non paramétrique, on considère les estimateurs des paramètres fonctionnels usuels, tels la loi conditionnelle, la densité de probabilité conditionnelle, ainsi que le quantile conditionnel. Le premier travail consiste à proposer un estimateur du quantile conditionnel et de prouver sa convergence uniforme sur un sous-ensemble compact. Afin de suivre la convention dans les études biomédicales, nous considérons une suite de v.a {Ti, i ≥ 1} identiquement distribuées, de densité f, censurée à droite par une suite aléatoire {Ci, i ≥ 1} supposée aussi indépendante, identiquement distribuée et indépendante de {Ti, i ≥ 1}. Notre étude porte sur des données fortement mélangeantes et X la covariable prend des valeurs dans un espace à dimension infinie.Le second travail consiste à établir la normalité asymptotique de l’estimateur à noyau du quantile conditionnel convenablement normalisé, pour des données fortement mélangeantes, et repose sur la probabilité de petites boules. Plusieurs applications à des cas particuliers ont été traitées. Enfin, nos résultats sont appliqués à des données simulées et montrent la qualité de notre estimateur. / In this thesis, we study some asymptotic properties of conditional functional parameters in nonparametric statistics setting, when the explanatory variable takes its values in infinite dimension space. In this nonparametric setting, we consider the estimators of the usual functional parameters, as the conditional law, the conditional probability density, the conditional quantile. We are essentially interested in the problem of forecasting in the nonparametric conditional models, when the data are functional random variables. Firstly, we propose an estimator of the conditional quantile and we establish its uniform strong convergence with rates over a compact subset. To follow the convention in biomedical studies, we consider an identically distributed sequence {Ti, i ≥ 1}, here density f, right censored by a random {Ci, i ≥ 1} also assumed independent identically distributed and independent of {Ti, i ≥ 1}. Our study focuses on dependent data and the covariate X takes values in an infinite space dimension. In a second step we establish the asymptotic normality of the kernel estimator of the conditional quantile, under α-mixing assumption and on the concentration properties on small balls of the probability measure of the functional regressors. Many applications in some particular cases have been also given.
|
Page generated in 0.064 seconds