• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Quantification vectorielle en grande dimension : vitesses de convergence et sélection de variables / High-dimensional vector quantization : convergence rates and variable selection

Levrard, Clément 30 September 2014 (has links)
Ce manuscrit étudie dans un premier temps la dépendance de la distorsion, ou erreur en quantification, du quantificateur construit à partir d'un n-échantillon d'une distribution de probabilité via l'algorithme des k-means. Plus précisément, l'objectif de ce travail est de donner des bornes en probabilité sur l'écart entre la distorsion de ce quantificateur et la plus petite distorsion atteignable parmi les quantificateurs, à nombre d'images k fixé, décrivant l'influence des divers paramètres de ce problème: support de la distribution de probabilité à quantifier, nombre d'images k, dimension de l'espace vectoriel sous-jacent, et taille de l'échantillon servant à construire le quantificateur k-mean. Après un bref rappel des résultats précédents, cette étude établit l'équivalence des diverses conditions existantes pour établir une vitesse de convergence rapide en la taille de l'échantillon de l'écart de distorsion considéré, dans le cas des distributions à densité, à une condition technique ressemblant aux conditions requises en classification supervisée pour l'obtention de vitesses rapides de convergence. Il est ensuite prouvé que, sous cette condition technique, une vitesse de convergence de l'ordre de 1/n pouvait être atteinte en espérance. Ensuite, cette thèse énonce une condition facilement interprétable, appelée condition de marge, suffisante à la satisfaction de la condition technique établie précédemment. Plusieurs exemples classiques de distributions satisfaisant cette condition sont donnés, tels les mélanges gaussiens. Si cette condition de marge se trouve satisfaite, une description précise de la dépendance de l'écart de distorsion étudié peut être donné via une borne en espérance: la taille de l'échantillon intervient via un facteur 1/n, le nombre d'images k intervient via différentes quantités géométriques associées à la distribution à quantifier, et de manière étonnante la dimension de l'espace sous-jacent semble ne jouer aucun rôle. Ce dernier point nous a permis d'étendre nos résultats au cadre des espaces de Hilbert, propice à la quantification des courbes. Néanmoins, la quantification effective en grande dimension nécessite souvent en pratique une étape de réduction du nombre de variables, ce qui nous a conduit dans un deuxième temps à étudier une procédure de sélection de variables associée à la quantification. Plus précisément, nous nous sommes intéressés à une procédure de type Lasso adaptée au cadre de la quantification vectorielle, où la pénalité Lasso porte sur l'ensemble des points images du quantificateur, dans le but d'obtenir des points images parcimonieux. Si la condition de marge introduite précédemment est satisfaite, plusieurs garanties théoriques sont établies concernant le quantificateur issu d'une telle procédure, appelé quantificateur Lasso k-means, à savoir que les points images de ce quantificateur sont proches des points images d'un quantificateur naturellement parcimonieux, réalisant un compromis entre erreur en quantification et taille du support des points images, et que l'écart en distorsion du quantificateur Lasso k-means est de l'ordre de 1/n^(1/2) en la taille de l'échantillon. Par ailleurs la dépendance de cette distorsion en les différents autres paramètres de ce problème est donnée explicitement. Ces prédictions théoriques sont illustrées par des simulations numériques confirmant globalement les propriétés attendues d'un tel quantificateur parcimonieux, mais soulignant néanmoins quelques inconvénients liés à l'implémentation effective de cette procédure. / The distortion of the quantizer built from a n-sample of a probability distribution over a vector space with the famous k-means algorithm is firstly studied in this thesis report. To be more precise, this report aims to give oracle inequalities on the difference between the distortion of the k-means quantizer and the minimum distortion achievable by a k-point quantizer, where the influence of the natural parameters of the quantization issue should be precisely described. For instance, some natural parameters are the distribution support, the size k of the quantizer set of images, the dimension of the underlying Euclidean space, and the sample size n. After a brief summary of the previous works on this topic, an equivalence between the conditions previously stated for the excess distortion to decrease fast with respect to the sample size and a technical condition is stated, in the continuous density case. Interestingly, this condition looks like a technical condition required in statistical learning to achieve fast rates of convergence. Then, it is proved that the excess distortion achieves a fast convergence rate of 1/n in expectation, provided that this technical condition is satisfied. Next, a so-called margin condition is introduced, which is easier to understand, and it is established that this margin condition implies the technical condition mentioned above. Some examples of distributions satisfying this margin condition are exposed, such as the Gaussian mixtures, which are classical distributions in the clustering framework. Then, provided that this margin condition is satisfied, an oracle inequality on the excess distortion of the k-means quantizer is given. This convergence result shows that the excess distortion decreases with a rate 1/n and depends on natural geometric properties of the probability distribution with respect to the size of the set of images k. Suprisingly the dimension of the underlying Euclidean space seems to play no role in the convergence rate of the distortion. Following the latter point, the results are directly extended to the case where the underlying space is a Hilbert space, which is the adapted framework when dealing with curve quantization. However, high-dimensional quantization often needs in practical a dimension reduction step, before proceeding to a quantization algorithm. This motivates the following study of a variable selection procedure adapted to the quantization issue. To be more precise, a Lasso type procedure adapted to the quantization framework is studied. The Lasso type penalty applies to the set of image points of the quantizer, in order to obtain sparse image points. The outcome of this procedure is called the Lasso k-means quantizer, and some theoretical results on this quantizer are established, under the margin condition introduced above. First it is proved that the image points of such a quantizer are close to the image points of a sparse quantizer, achieving a kind of tradeoff between excess distortion and size of the support of image points. Then an oracle inequality on the excess distortion of the Lasso k-means quantizer is given, providing a convergence rate of 1/n^(1/2) in expectation. Moreover, the dependency of this convergence rate on different other parameters is precisely described. These theoretical predictions are illustrated with numerical experimentations, showing that the Lasso k-means procedure mainly behaves as expected. However, the numerical experimentations also shed light on some drawbacks concerning the practical implementation of such an algorithm.

Page generated in 0.1348 seconds