• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Relação morfologia-propriedades elétricas de eletrólitos compósitos de Nafion para célula a combustível de alta temperatura / Morphology-electrical properties relations in nafion composite electrolytes for high temperature fuel cell

Matos, Bruno Ribeiro de 07 February 2013 (has links)
As células a combustível a etanol direto (DEFCs) são consideradas geradores de energia eficientes e de baixo impacto ambiental. O foco deste trabalho é avançar o entendimento sobre eletrólitos compósitos híbridos do tipo Nafion-cerâmica visando o aumento do desempenho das DEFCs operando em T ~ 130 °C. Partículas inorgânicas foram crescidas na matriz polimérica formando os compósitos Nafion-Sílica (NS), Nafion-Fosfato de Zircônio (NZ) e Nafion-Titânia (NT). Este último (NT) serviu como material precursor para a conversão in situ da titânia em nanotubos de titanato de hidrogênio por uma rota hidrotérmica alcalina assistida por micro-ondas (NNTH). A relação microestrutura-propriedades elétricas foi estudada por meio de medidas de espectroscopia dielétrica, análise dinâmico-mecânica, calorimetria diferencial exploratória e espalhamento de raios X em baixo ângulo. Estas técnicas contribuíram, por exemplo, para inferir a localização das partículas inorgânicas na estrutura multifásica do Nafion e estabelecer a sua influência nas propriedades gerais dos compósitos. Os resultados indicaram que as interações de repulsão eletrostática de longo alcance entre os grupos sulfônicos do Nafion hidratado provocam a transição conformacional das cadeias principais do estado enovelado para a conformação tipo bastão. Tal transição promove a redução da condutividade protônica e da estabilidade mecânica do Nafion para temperaturas acima da temperatura da relaxação (Tα ~ 110 °C), a qual pode ser deslocada para maiores temperaturas (T > 160 °C) nos compósitos híbridos. A interação das partículas de sílica e de titânia com a fase condutora do Nafion é maximizada, enquanto que as partículas de fosfato de zircônio estão localizadas majoritariamente nos domínios apolares. As interações entre os grupos sulfônicos do Nafion e as partículas de titânia contribuíram para a melhora das propriedades mecânicas em altas temperaturas e para a redução da permeabilidade ao etanol, as quais promoveram o aumento do desempenho da DEFC em altas temperaturas. A baixa permeabilidade ao etanol e as melhores propriedades termomecânicas e de transporte protônico dos compósitos NNTH refletiram em um elevado desempenho das DEFCs a 130 °C, evidenciando que estes eletrólitos compósitos são promissores para a aplicação pretendida. / Direct Ethanol Fuel Cells (DEFCs) are considered a clean and high efficient power source. The focus of this thesis is to contribute to advance the understanding of Nafion-based hybrid composites aiming at high-performance DEFCs operating at elevated temperatures (T ~ 130 °C). Three inorganic particles were grown in the polymer matrix forming the electrolyte composites Nafion-Silica (NS), Nafion-Zirconium Phosphate (NZ), and Nafion-Titania (NT). The latter (NT) served as a precursor composite for the in situ conversion of titania into hydrogen titanate nanotubes by a microwave-assisted alkaline hydrothermal reaction (NNTH). The relation microstructure-eletrical property was studied by dielectric spectroscopy, dynamic-mechanical analysis, differential scanning calorimetry, and small angle X-ray scattering. Such techniques contributed, for example, to infer the localization of the inorganic particles in the Nafion multiphase structure and to establish its influence in the general properties of the composites. The results indicated that long range electrostatic repulsion occurring within Nafion ionic groups promotes a conformational transition of the polymer main chains from entangled to rodlike. Such transition reduces both the proton conductivity and the mechanical stability at temperatures higher than relaxation temperature (Tα ~ 110 °C), which was found to be shifted to higher T > 160 ºC in the hybrid composites. The interaction between silica and titania particles with Nafion conducting phase is maximized, while the zirconium phosphate particles occupy preferably the hydrophobic domains. The interactions between Nafion sulfonic acid groups and titania particles contributed to the improvement of the mechanical properties at high temperature and to the lowering of ethanol permeability that increased DEFC performance at high temperature. The low ethanol permeability, high mechanical and electrical properties of NNTH reflected in the high DEFC performance at 130 °C, evidencing this composite as a promising electrolyte for the intended application.
2

Relação morfologia-propriedades elétricas de eletrólitos compósitos de Nafion para célula a combustível de alta temperatura / Morphology-electrical properties relations in nafion composite electrolytes for high temperature fuel cell

Bruno Ribeiro de Matos 07 February 2013 (has links)
As células a combustível a etanol direto (DEFCs) são consideradas geradores de energia eficientes e de baixo impacto ambiental. O foco deste trabalho é avançar o entendimento sobre eletrólitos compósitos híbridos do tipo Nafion-cerâmica visando o aumento do desempenho das DEFCs operando em T ~ 130 °C. Partículas inorgânicas foram crescidas na matriz polimérica formando os compósitos Nafion-Sílica (NS), Nafion-Fosfato de Zircônio (NZ) e Nafion-Titânia (NT). Este último (NT) serviu como material precursor para a conversão in situ da titânia em nanotubos de titanato de hidrogênio por uma rota hidrotérmica alcalina assistida por micro-ondas (NNTH). A relação microestrutura-propriedades elétricas foi estudada por meio de medidas de espectroscopia dielétrica, análise dinâmico-mecânica, calorimetria diferencial exploratória e espalhamento de raios X em baixo ângulo. Estas técnicas contribuíram, por exemplo, para inferir a localização das partículas inorgânicas na estrutura multifásica do Nafion e estabelecer a sua influência nas propriedades gerais dos compósitos. Os resultados indicaram que as interações de repulsão eletrostática de longo alcance entre os grupos sulfônicos do Nafion hidratado provocam a transição conformacional das cadeias principais do estado enovelado para a conformação tipo bastão. Tal transição promove a redução da condutividade protônica e da estabilidade mecânica do Nafion para temperaturas acima da temperatura da relaxação (Tα ~ 110 °C), a qual pode ser deslocada para maiores temperaturas (T > 160 °C) nos compósitos híbridos. A interação das partículas de sílica e de titânia com a fase condutora do Nafion é maximizada, enquanto que as partículas de fosfato de zircônio estão localizadas majoritariamente nos domínios apolares. As interações entre os grupos sulfônicos do Nafion e as partículas de titânia contribuíram para a melhora das propriedades mecânicas em altas temperaturas e para a redução da permeabilidade ao etanol, as quais promoveram o aumento do desempenho da DEFC em altas temperaturas. A baixa permeabilidade ao etanol e as melhores propriedades termomecânicas e de transporte protônico dos compósitos NNTH refletiram em um elevado desempenho das DEFCs a 130 °C, evidenciando que estes eletrólitos compósitos são promissores para a aplicação pretendida. / Direct Ethanol Fuel Cells (DEFCs) are considered a clean and high efficient power source. The focus of this thesis is to contribute to advance the understanding of Nafion-based hybrid composites aiming at high-performance DEFCs operating at elevated temperatures (T ~ 130 °C). Three inorganic particles were grown in the polymer matrix forming the electrolyte composites Nafion-Silica (NS), Nafion-Zirconium Phosphate (NZ), and Nafion-Titania (NT). The latter (NT) served as a precursor composite for the in situ conversion of titania into hydrogen titanate nanotubes by a microwave-assisted alkaline hydrothermal reaction (NNTH). The relation microstructure-eletrical property was studied by dielectric spectroscopy, dynamic-mechanical analysis, differential scanning calorimetry, and small angle X-ray scattering. Such techniques contributed, for example, to infer the localization of the inorganic particles in the Nafion multiphase structure and to establish its influence in the general properties of the composites. The results indicated that long range electrostatic repulsion occurring within Nafion ionic groups promotes a conformational transition of the polymer main chains from entangled to rodlike. Such transition reduces both the proton conductivity and the mechanical stability at temperatures higher than relaxation temperature (Tα ~ 110 °C), which was found to be shifted to higher T > 160 ºC in the hybrid composites. The interaction between silica and titania particles with Nafion conducting phase is maximized, while the zirconium phosphate particles occupy preferably the hydrophobic domains. The interactions between Nafion sulfonic acid groups and titania particles contributed to the improvement of the mechanical properties at high temperature and to the lowering of ethanol permeability that increased DEFC performance at high temperature. The low ethanol permeability, high mechanical and electrical properties of NNTH reflected in the high DEFC performance at 130 °C, evidencing this composite as a promising electrolyte for the intended application.
3

Condução protônica e efeito de bloqueio elétrico em cerâmicas de estrutura tipo perovskita dupla ordenada / Proton conduction and electrical blocking effect on ceramic materials with ordered perovskite structure

Francisco, Lucas Henrique 09 February 2018 (has links)
O desenvolvimento de novos materiais cerâmicos condutores de prótons é tecnologicamente importante devido às suas aplicações como eletrólitos em células a combustível de óxido sólido (SOFCs), dispositivos eletroquímicos fontes de energia limpa e renovável. Entre os desafios encontrados na aplicação nessas células de novos óxidos cerâmicos prótoncondutores está a alta resistividade de seus contornos de grão, que bloqueiam eletricamente a corrente de defeitos protônicos. Esse fato torna relevantes as pesquisas sobre a natureza desse fenômeno de bloqueio e sua relação com as características próton-condutivas do material. Nesta dissertação, investigamos as propriedades do sistema não estequiométrico Ba3Ca1,18Nb1,82O9-δ, juntamente com os compostos Ba3Ca1,18Nb1,52R0,3O9-δ (R = Y, Gd, Sm, Nd). Pós cristalinos dessas composições foram sintetizados via reação em estado sólido e utilizados na fabricação de cerâmicas. Os materiais foram caracterizados do ponto de vista estrutural, microestrutural, vibracional e elétrico, utilizando diversas técnicas físicas e correlacionado as características de cada composição às suas propriedades condutivas. Experimentos de difração de raios X e cálculos de fator de estrutura revelaram o aparecimento de ordenamento estrutural na estrutura perovskita de todos os sistemas sintetizados, sendo a intensidade de reflexões características utilizada como parâmetro de ordenamento. A microestrutura das cerâmicas foi otimizada em função do tempo de sinterização e as amostras finais obtidas apresentaram baixa porosidade. A caracterização vibracional das cerâmicas via espectroscopia Raman corrobora o resultado do ordenamento obtido via difração, além de indicar a presença ou preenchimento de vacâncias de oxigênio na rede cristalina dos materiais. Análises vibracionais também permitiram o estudo da acumulação de defeitos na borda das amostras cerâmicas e de sua estabilidade química, sendo tais diretamente correlacionadas à dopagem feita no material. O estudo de propriedades elétricas por espectroscopia de impedância aliado a modelagens por circuitos equivalentes permitiu separar propriedades elétricas de grão e contorno de grão. O efeito de bloqueio elétrico dos contornos pôde ser observado nas cerâmicas estudadas e está correlacionado à condutividade do interior dos grãos, sendo tais resultados interpretados à luz do modelo de cargas espaciais. / The development of novel proton conducting ceramic materials is technologically important due to their application as electrolytes in solid oxide fuel cells (SOFC), electrochemical devices that constitute clean and renewable energy sources. Among the challenges faced when applying new oxide materials to fuel cells is the high resistivity of grain boundaries, which causes an electrical blocking effect of proton transport. This issue stimulates research on the nature of the blocking phenomenon and its relation to proton-conducting properties of the materials. In the present study, we investigate physical properties of the non-stoichiometric system Ba3Ca1,18Nb1,82O9-δ together with the compounds Ba3Ca1,18Nb1,52R0,3O9-δ (R = Y, Nd, Sm, Gd). Crystalline powders of all the chemical compositions were synthetized by a solidstate reaction and used to prepare ceramic samples. The materials were characterized in terms of their structural, microstructural, vibrational and electrical properties by the usage of various physical techniques, correlating characteristics of each composition to its proton-conduction properties. X-ray diffraction experiments combined with structure factor calculations revealed the presence of perovskite structural ordering in all the compounds, and the intensity of characteristic reflections was used as ordering parameter. Ceramic microstructure was optimized with respect to sintering time and the final samples achieved low porosity. Vibrational characterization by Raman spectroscopy supported the ordering result obtained by diffraction and indicated the presence or filling of oxygen vacancies in the materials crystal structures. Vibrational analysis also allowed the study of defect accumulation near the ceramic samples edges and their chemical stability, which are directly related to material doping. Electrical studies by impedance spectroscopy together with equivalent circuit modeling allowed the separation of grain and grain boundary electrical properties. Blocking effect by the boundaries was observed on the considered samples and is correlated to conductivity on grain bulk. Blocking results are interpreted in the framework of a space charge model.
4

Condução protônica e efeito de bloqueio elétrico em cerâmicas de estrutura tipo perovskita dupla ordenada / Proton conduction and electrical blocking effect on ceramic materials with ordered perovskite structure

Lucas Henrique Francisco 09 February 2018 (has links)
O desenvolvimento de novos materiais cerâmicos condutores de prótons é tecnologicamente importante devido às suas aplicações como eletrólitos em células a combustível de óxido sólido (SOFCs), dispositivos eletroquímicos fontes de energia limpa e renovável. Entre os desafios encontrados na aplicação nessas células de novos óxidos cerâmicos prótoncondutores está a alta resistividade de seus contornos de grão, que bloqueiam eletricamente a corrente de defeitos protônicos. Esse fato torna relevantes as pesquisas sobre a natureza desse fenômeno de bloqueio e sua relação com as características próton-condutivas do material. Nesta dissertação, investigamos as propriedades do sistema não estequiométrico Ba3Ca1,18Nb1,82O9-δ, juntamente com os compostos Ba3Ca1,18Nb1,52R0,3O9-δ (R = Y, Gd, Sm, Nd). Pós cristalinos dessas composições foram sintetizados via reação em estado sólido e utilizados na fabricação de cerâmicas. Os materiais foram caracterizados do ponto de vista estrutural, microestrutural, vibracional e elétrico, utilizando diversas técnicas físicas e correlacionado as características de cada composição às suas propriedades condutivas. Experimentos de difração de raios X e cálculos de fator de estrutura revelaram o aparecimento de ordenamento estrutural na estrutura perovskita de todos os sistemas sintetizados, sendo a intensidade de reflexões características utilizada como parâmetro de ordenamento. A microestrutura das cerâmicas foi otimizada em função do tempo de sinterização e as amostras finais obtidas apresentaram baixa porosidade. A caracterização vibracional das cerâmicas via espectroscopia Raman corrobora o resultado do ordenamento obtido via difração, além de indicar a presença ou preenchimento de vacâncias de oxigênio na rede cristalina dos materiais. Análises vibracionais também permitiram o estudo da acumulação de defeitos na borda das amostras cerâmicas e de sua estabilidade química, sendo tais diretamente correlacionadas à dopagem feita no material. O estudo de propriedades elétricas por espectroscopia de impedância aliado a modelagens por circuitos equivalentes permitiu separar propriedades elétricas de grão e contorno de grão. O efeito de bloqueio elétrico dos contornos pôde ser observado nas cerâmicas estudadas e está correlacionado à condutividade do interior dos grãos, sendo tais resultados interpretados à luz do modelo de cargas espaciais. / The development of novel proton conducting ceramic materials is technologically important due to their application as electrolytes in solid oxide fuel cells (SOFC), electrochemical devices that constitute clean and renewable energy sources. Among the challenges faced when applying new oxide materials to fuel cells is the high resistivity of grain boundaries, which causes an electrical blocking effect of proton transport. This issue stimulates research on the nature of the blocking phenomenon and its relation to proton-conducting properties of the materials. In the present study, we investigate physical properties of the non-stoichiometric system Ba3Ca1,18Nb1,82O9-δ together with the compounds Ba3Ca1,18Nb1,52R0,3O9-δ (R = Y, Nd, Sm, Gd). Crystalline powders of all the chemical compositions were synthetized by a solidstate reaction and used to prepare ceramic samples. The materials were characterized in terms of their structural, microstructural, vibrational and electrical properties by the usage of various physical techniques, correlating characteristics of each composition to its proton-conduction properties. X-ray diffraction experiments combined with structure factor calculations revealed the presence of perovskite structural ordering in all the compounds, and the intensity of characteristic reflections was used as ordering parameter. Ceramic microstructure was optimized with respect to sintering time and the final samples achieved low porosity. Vibrational characterization by Raman spectroscopy supported the ordering result obtained by diffraction and indicated the presence or filling of oxygen vacancies in the materials crystal structures. Vibrational analysis also allowed the study of defect accumulation near the ceramic samples edges and their chemical stability, which are directly related to material doping. Electrical studies by impedance spectroscopy together with equivalent circuit modeling allowed the separation of grain and grain boundary electrical properties. Blocking effect by the boundaries was observed on the considered samples and is correlated to conductivity on grain bulk. Blocking results are interpreted in the framework of a space charge model.

Page generated in 0.0662 seconds