Spelling suggestions: "subject:"conductive biomaterials"" "subject:"onductive biomaterials""
1 |
Electrical Stimulation Bioreactor and Biomaterials for Improved Culture of Stem Cell-Derived Cardiac CellsLicata, Joseph, 0000-0002-8749-5952 08 1900 (has links)
Advancements in regenerative medicine have opened new possibilities for treating cardiovascular diseases. Using stem cell-derived cardiac cells has shown great promise in regenerating damaged heart tissue. However, the efficacy of this approach is limited by the inability to culture, differentiate, and mature these cells in a controlled and efficient manner. This work addresses some of these challenges by developing new tools and techniques for the culture and differentiation of human stem cell-derived cardiomyocytes.
To address the above issues, we developed a novel bioreactor to deliver electrical stimulation and fluid mixing for enhanced nutrient transfer to improve the differentiation and maturation of stem cell-derived cardiomyocytes. This bioreactor was designed using computation modeling to optimize the applied electrical stimulation and fluid flow and constructed using low-cost, 3D-printed materials. Electrical stimulation in the bioreactor improves the differentiation and maturation of cardiomyocytes. Specifically, we tested how electrical stimulation can influence the subtype determination of stem cell-derived cardiomyocytes in vitro. In addition, we have developed conductive biomaterials in the form of transparent conductive films and conductive nanofibers to further aid in the maturation of cardiomyocytes.
Overall, this study represents a significant step forward in developing new tools and techniques for the culture and differentiation of stem cell-derived cardiac cells. The bioreactor and conductive biomaterials developed in this study have the potential to improve the efficiency and effectiveness of stem cell-based therapies for the treatment of cardiovascular diseases, and the results of electrical stimulation experiments provide essential insights into the optimal stimulation parameters for the differentiation and maturation of stem cell-derived cardiac cells. Further research is needed to optimize these techniques and translate them into clinical practice, but this study provides an important foundation for future work in this area. / Bioengineering / Accompanied by one .zip file : 1) Licata_temple_0225E_171Supplemental_Videos.zip
|
Page generated in 0.073 seconds