• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

DESIGNING COST-EFFECTIVE COARSE-GRAINED RECONFIGURABLE ARCHITECTURE

Kim, Yoonjin 2009 May 1900 (has links)
Application-specific optimization of embedded systems becomes inevitable to satisfy the market demand for designers to meet tighter constraints on cost, performance and power. On the other hand, the flexibility of a system is also important to accommodate the short time-to-market requirements for embedded systems. To compromise these incompatible demands, coarse-grained reconfigurable architecture (CGRA) has emerged as a suitable solution. A typical CGRA requires many processing elements (PEs) and a configuration cache for reconfiguration of its PE array. However, such a structure consumes significant area and power. Therefore, designing cost-effective CGRA has been a serious concern for reliability of CGRA-based embedded systems. As an effort to provide such cost-effective design, the first half of this work focuses on reducing power in the configuration cache. For power saving in the configuration cache, a low power reconfiguration technique is presented based on reusable context pipelining achieved by merging the concept of context reuse into context pipelining. In addition, we propose dynamic context compression capable of supporting only required bits of the context words set to enable and the redundant bits set to disable. Finally, we provide dynamic context management capable of reducing reduce power consumption in configuration cache by controlling a read/write operation of the redundant context words In the second part of this dissertation, we focus on designing a cost-effective PE array to reduce area and power. For area and power saving in a PE array, we devise a costeffective array fabric addresses novel rearrangement of processing elements and their interconnection designs to reduce area and power consumption. In addition, hierarchical reconfigurable computing arrays are proposed consisting of two reconfigurable computing blocks with two types of communication structure together. The two computing blocks have shared critical resources and such a sharing structure provides efficient communication interface between them with reducing overall area. Based on the proposed design approaches, a CGRA combining the multiple design schemes is shown to verify the synergy effect of the integrated approach. Experimental results show that the integrated approach reduces area by 23.07% and power by up to 72% when compared with the conventional CGRA.

Page generated in 0.104 seconds