• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamic Model Based Diagnosis for Combustion Engines in RODON

Lundkvist, Joella, Wahnström, Stina January 2007 (has links)
<p>Diagnosis is the task of finding faults or malfunctioning components in a technical system, e.g a car. When doing diagnosis on cars with combustion engines, a computer program can be used. The computer program, also called diagnosis system, needs information about the car. This information could be data sheets of all the electronic components in the car. It could also be a description of how the engine behaves in a nominal and a non-nominal case. This information is contained in a model of the engine. RODON, a diagnostic tool developed by Sörman Information and Media AB, uses models of systems for conflict detection diagnosis. RODON needs fault models of the components to do diagnosis. The diagnosis system is then used in workshops, factories, or other places where cars need to be surveyed.</p><p>In this thesis, a Simulink model of the nominal behaviour of a combustion engine is given. The problem is how to make use of the model as well as the diagnostic tool RODON for combustion engine diagnosis. To solve this, the Simulink model is translated into a RODON model. Translating a Simulink model into a RODON model requires a new library in RODON. The library developed in this thesis is called AdvancedBlocks library.</p><p>The Simulink model describes the nominal behaviour of a combustion engine but for diagnosis with RODON, fault models are needed as well. Several types of faults that can occur in an engine have been studied and fault models have been implemented in RODON. The conclusion is that diagnosis in RODON with a translated engine model is possible.</p>
2

Dynamic Model Based Diagnosis for Combustion Engines in RODON

Lundkvist, Joella, Wahnström, Stina January 2007 (has links)
Diagnosis is the task of finding faults or malfunctioning components in a technical system, e.g a car. When doing diagnosis on cars with combustion engines, a computer program can be used. The computer program, also called diagnosis system, needs information about the car. This information could be data sheets of all the electronic components in the car. It could also be a description of how the engine behaves in a nominal and a non-nominal case. This information is contained in a model of the engine. RODON, a diagnostic tool developed by Sörman Information and Media AB, uses models of systems for conflict detection diagnosis. RODON needs fault models of the components to do diagnosis. The diagnosis system is then used in workshops, factories, or other places where cars need to be surveyed. In this thesis, a Simulink model of the nominal behaviour of a combustion engine is given. The problem is how to make use of the model as well as the diagnostic tool RODON for combustion engine diagnosis. To solve this, the Simulink model is translated into a RODON model. Translating a Simulink model into a RODON model requires a new library in RODON. The library developed in this thesis is called AdvancedBlocks library. The Simulink model describes the nominal behaviour of a combustion engine but for diagnosis with RODON, fault models are needed as well. Several types of faults that can occur in an engine have been studied and fault models have been implemented in RODON. The conclusion is that diagnosis in RODON with a translated engine model is possible.

Page generated in 0.1074 seconds