Spelling suggestions: "subject:"conformal loop densemble"" "subject:"conformal loop dfensemble""
1 |
Autour les relations entre SLE, CLE, champ libre Gaussien, et les conséquences / On the relations between SLE, CLE, GFF and the consequencesWu, Hao 26 June 2013 (has links)
Cette thèse porte sur les relations entre les processus SLE, les ensembles CLE et le champ libre Gaussien. Dans le chapitre 2, nous donnons une construction des processus SLE(k,r) à partir des boucles des CLE(k) et d'échantillons de restriction chordale. Sheffield et Werner ont prouvé que les CLE(k) peuvent être construits à partir des processus d'exploration symétriques des SLE(k,r).Nous montrons dans le chapitre 3 que la configuration des boucles construites à partir du processus d'exploration asymétrique des SLE(k,k-6) donne la même loi CLE(k). Le processus SLE(4) peut être considéré comme les lignes de niveau du champ libre Gaussien et l'ensemble CLE(4) correspond à la collection des lignes de niveau de ce champ libre Gaussien. Dans la deuxième partie du chapitre 3, nous définissons un paramètre de temps invariant conforme pour chaque boucle appartenant à CLE(4) et nous donnons ensuite dans le chapitre 4 un couplage entre le champ libre Gaussien et l'ensemble CLE(4) à l'aide du paramètre de temps. Les processus SLE(k) peuvent être considérés comme les lignes de flot du champ libre Gaussien. Nous explicitons la dimension de Hausdorff de l'intersection de deux lignes de flot du champ libre Gaussien. Cela nous permet d'obtenir la dimension de l'ensemble des points de coupure et des points doubles de la courbe SLE, voir le chapitre 5. Dans le chapitre 6, nous définissons la mesure de restriction radiale, prouvons la caractérisation de ces mesures, et montrons la condition nécessaire et suffisante de l'existence des mesures de restriction radiale. / This thesis focuses on various relations between SLE, CLE and GFF. In Chapter 2, we give a construction of SLE(k,r) processes from CLE(k) loop configuration and chordal restriction samples. Sheffield and Werner has proved that CLE(k) can be constructed from symmetric SLE(k,k-6) exploration processes. We prove in Chapter 3 that the loop configuration constructed from the asymmetric SLE(k,k-6) exploration processes also give the same law CLE(k). SLE(4) can be viewed as level lines of GFF and CLE(4) can be viewed as the collection of level lines of GFF. We define a conformally invariant time parameter for each loop in CLE(4) in the second part of Chapter 3 and then give a coupling between GFF and CLE(4) with time parameter in Chapter 4. SLE(k,r) can be viewed as flow lines of GFF. We derive the Hausdorff dimension of the intersection of two flow lines in GFF. Then, from there, we obtain the dimension of the cut and double point set of SLE curve in Chapter 5. In Chapter 6, we define the radial restriction measure, prove the characterization of these measures, and show the if and only if condition for the existence of radial restriction measure.
|
2 |
Ensembles poissoniens de boucles markoviennes / Poissonian ensembles of Markovian loopsLupu, Titus 26 May 2015 (has links)
L'objet d'étude de cette thèse est une mesure infinie sur les boucles (lacets) naturellement associée à une large classe de processus de Markov et les processus ponctuels de Poisson d'intensité proportionnelle à cette mesure (paramètre d'intensité alpha>0). Ces processus ponctuels de Poisson portent le nom d'ensembles poissoniens de boucles markoviennes ou de soupes de boucles. La mesure sur les boucles est covariante par un certain nombre de transformations sur les processus de Markov, par exemple le changement de temps.Dans le cadre de soupe de boucles brownienne à l'intérieur d'un sous-domaine ouvert propre simplement connexe de C, il a été montré que les contours extérieurs des amas extérieurs de boucles sont, pour alpha<=1/2, des Conformal Loop Ensembles CLE(kappa), kappa dans (8/3,4]. D'autre part il a été montré pour une large classe de processus de Markov symétriques que lorsque alpha=1/2, le champ d'occupation d'une soupe de boucle (somme des temps passés par les boucles aux dessus des points) est le carré du champ libre gaussien. J'ai étudié d'abord les soupes de boucles associés aux processus de diffusion unidimensionnels, notamment leur champ d'occupation dont les zéros délimitent dans ce cas les amas de boucles. Puis j'ai étudié les soupes de boucles sur graphe discret ainsi que sur graphe métrique (arêtes remplacés par des fils continus). Sur graphe métrique on a d'une part une géométrie non triviale pour les boucles et d'autre part on a comme dans le cas unidimensionnel continu la propriété que les zéros du champ d'occupation délimitent les amas des boucles. En combinant les graphes métriques et l'isomorphisme avec le champ libre gaussien j'ai montré que alpha=1/2 est le paramètre d'intensité critique pour la percolation par soupe de boucles de marche aléatoire sur le demi plan discret Z*N (existence ou non d'un amas infini) et que pour alpha<=1/2 la limite d'échelle des contours extérieurs des amas extérieurs sur Z*N est un CLE(kappa) dans le demi-plan continu. / In this thesis I study an infinite measure on loops naturally associated to a wide range of Markovian processes and the Poisson point processes of intensity proportional to this measure (intensity parameter alpha>0). This Poissson point processes are called Poisson ensembles of Markov loops or loop soups. The measure on loops is covariant with some transformation on Markovian processes, for instance the change of time. In the setting of Brownian loop soups inside a proper open simply connected domain of C it was shown that the outer boundaries of outermost clusters of loops are, for alpha1/2, Conformal Loop Ensembles CLE(kappa), kappa in (8/3,4]. Besides, it was shown for a wide range of symmetric Markovian processes that for alpha=1/2 the occupation field of a loop soup (the sum of times spent by loops over points) is the square of the Gaussian free field. First I studied the loop soups associated to one-dimensional diffusions, and particularly the occupation field and its zeroes that delimit in this case the clusters of loops. Then I studied the loop soups on discrete graphs and metric graphs (edges replaced by continuous lines). On a metric graph on one hand the loops have a non-trivial geometry and on the other hand one has the same property as in the setting of one-dimensional diffusions that the zeroes of the occupation field delimit the clusters of loops. By combing metric graphs and the isomorphism with the Gaussian free field I have shown that alpha=1/2 is the critical parameter for random walk loop soup percolation on the discrete half-plane Z*N (existence or not of an infinite cluster of loops) and that for alpha<= 1/2 the scaling limit of outer boundaries of outermost clusters on Z*N is a CLE(kappa) on the continuum half plane.
|
3 |
Autour les relations entre SLE, CLE, champ libre Gaussien, et les conséquencesWu, Hao 26 June 2013 (has links) (PDF)
Cette thèse porte sur les relations entre les processus SLE, les ensembles CLE et le champ libre Gaussien. Dans le chapitre 2, nous donnons une construction des processus SLE(k,r) à partir des boucles des CLE(k) et d'échantillons de restriction chordale. Sheffield et Werner ont prouvé que les CLE(k) peuvent être construits à partir des processus d'exploration symétriques des SLE(k,r).Nous montrons dans le chapitre 3 que la configuration des boucles construites à partir du processus d'exploration asymétrique des SLE(k,k-6) donne la même loi CLE(k). Le processus SLE(4) peut être considéré comme les lignes de niveau du champ libre Gaussien et l'ensemble CLE(4) correspond à la collection des lignes de niveau de ce champ libre Gaussien. Dans la deuxième partie du chapitre 3, nous définissons un paramètre de temps invariant conforme pour chaque boucle appartenant à CLE(4) et nous donnons ensuite dans le chapitre 4 un couplage entre le champ libre Gaussien et l'ensemble CLE(4) à l'aide du paramètre de temps. Les processus SLE(k) peuvent être considérés comme les lignes de flot du champ libre Gaussien. Nous explicitons la dimension de Hausdorff de l'intersection de deux lignes de flot du champ libre Gaussien. Cela nous permet d'obtenir la dimension de l'ensemble des points de coupure et des points doubles de la courbe SLE, voir le chapitre 5. Dans le chapitre 6, nous définissons la mesure de restriction radiale, prouvons la caractérisation de ces mesures, et montrons la condition nécessaire et suffisante de l'existence des mesures de restriction radiale.
|
Page generated in 0.0724 seconds