Spelling suggestions: "subject:"conformally flat hypersurfaces inn R4"" "subject:"conformally flat hypersurfaces iin R4""
1 |
Hipersuperfícies conformemente planas em R4 / Conformally flat hipersurfaces of the R4Moreira, Lucas 13 March 2009 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2014-08-15T12:30:24Z
No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
dissertacao-lucas-1.pdf: 395719 bytes, checksum: 853c88b4092e0da7fb4784c37434ccbe (MD5) / Made available in DSpace on 2014-08-15T12:30:24Z (GMT). No. of bitstreams: 2
license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)
dissertacao-lucas-1.pdf: 395719 bytes, checksum: 853c88b4092e0da7fb4784c37434ccbe (MD5)
Previous issue date: 2009-03-13 / language="eng">The present work has been based by the [16] and [17] articles, from Oscar J. Garay. In
that articles he studied the conformally flat hypersurfaces in the R4 space, wich have the
mean curvature vector H like an eigenvector of their Laplacian Operator, i.e., DH = lH,
l 2R .We showed that these hypersurfaces are isoparametrics and, consequently, they are
either a minimal hypersurface, or an around 3-sphere S3(r) , or a cylinder over a 2-sphere
S2(r) R, or a cylinder over a circle S(r) R2. / Este trabalho foi baseado nos artigos [16] e [17] de Oscar J. Garay que consistem em
estudar as hipersuperfícies conformemente planas em R4, cujo vetor curvatura média,
H, ´e autovetor do operador Laplaciano, isto ´e, DH = lH, com l 2 R. Mostramos que
estas hipersuperfícies são isoparamétricas e, consequentemente, são m´ınimas, ou uma
hiperesfera S3(r), ou um cilindro cartesiano com uma 1-esfera R2 S1(r), ou um cilindro
cartesiano com uma 2-esfera R S2(r).
|
Page generated in 0.1359 seconds