• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hipersuperfícies conformemente planas em R4 / Conformally flat hipersurfaces of the R4

Moreira, Lucas 13 March 2009 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2014-08-15T12:30:24Z No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) dissertacao-lucas-1.pdf: 395719 bytes, checksum: 853c88b4092e0da7fb4784c37434ccbe (MD5) / Made available in DSpace on 2014-08-15T12:30:24Z (GMT). No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) dissertacao-lucas-1.pdf: 395719 bytes, checksum: 853c88b4092e0da7fb4784c37434ccbe (MD5) Previous issue date: 2009-03-13 / language="eng">The present work has been based by the [16] and [17] articles, from Oscar J. Garay. In that articles he studied the conformally flat hypersurfaces in the R4 space, wich have the mean curvature vector H like an eigenvector of their Laplacian Operator, i.e., DH = lH, l 2R .We showed that these hypersurfaces are isoparametrics and, consequently, they are either a minimal hypersurface, or an around 3-sphere S3(r) , or a cylinder over a 2-sphere S2(r) R, or a cylinder over a circle S(r) R2. / Este trabalho foi baseado nos artigos [16] e [17] de Oscar J. Garay que consistem em estudar as hipersuperfícies conformemente planas em R4, cujo vetor curvatura média, H, ´e autovetor do operador Laplaciano, isto ´e, DH = lH, com l 2 R. Mostramos que estas hipersuperfícies são isoparamétricas e, consequentemente, são m´ınimas, ou uma hiperesfera S3(r), ou um cilindro cartesiano com uma 1-esfera R2 S1(r), ou um cilindro cartesiano com uma 2-esfera R S2(r).

Page generated in 0.1359 seconds