Spelling suggestions: "subject:"conifers -- browth."" "subject:"conifers -- bgrowth.""
1 |
Crop Tree Growth and Quality Twenty-five Years after Precommercial Thinning in a Northern Conifer StandPhillips, Leah M. January 2002 (has links) (PDF)
No description available.
|
2 |
Effects of lichen ground cover on conifer growth in northern taigaCowles, S. (Sidney William) January 1984 (has links)
No description available.
|
3 |
Effects of lichen ground cover on conifer growth in northern taigaCowles, S. (Sidney William) January 1984 (has links)
The effects of lichen ground cover (predominantly Cladina stellaris) on the growth of Picea mariana at Schefferville, Quebec and Pinus sylvestris at Kevo, Finland, was investigated in situ. Effect on seedling establishment was inferred through examining status quo conditions. While contiguous mat cover precluded establishment, its margins provided ameliorated conditions suitable for establishment. Moss covered areas were the most preferred sites. At Schefferville, ten perturbations involving fertilization, lichen removal, polyethylene overlays, and aqueous lichen extract application were effected on sixteen experimental plots. Branch elongation, needle nitrogen and bole diameter were statistically analyzed as functions of various monitored edaphic conditions. Leader elongation and needle nitrogen was measured at Kevo. Lichen presence over the term of both studies showed net beneficial effect on the trees; lichen extracts had significant detrimental effects. Seed germination was suppressed by lichen presence but enhanced by lichen induced low soil pH when in contact with the soil.
|
4 |
Urban Impacts to Forest Productivity, Soil Quality, and Canopy Structure in Forest Park, Portland, OregonAddessi, Andrew David 07 September 2017 (has links)
Land use practices and exposure to low impact disturbances associated with an urban environment can alter forest structure and function. Past and ongoing research in Forest Park, a large urban forest in Portland, Oregon, suggests that mature mixed Douglas-fir (Psuedotsuga meziesii)-hardwood stands in the more urban end of the park lack a shade-tolerant conifer understory composed of the late successional conifer tree species, such western hemlock (Tsuga heterophylla) and western red-cedar (Thuja plicata). 5-year plot remeasurement data that characterizes productivity and mortality patterns did not show a strong relationship to urban proximity. Plot productivity was generally consistent with values taken from studies of other similarly aged (~100 years old) Douglas-fir /Western Hemlock stands. Mortality was highest in rural plots, and was driven by large windthrow events to canopy trees. Soil organic matter, soil pH, and depth of organic horizon indicated a legacy of soil impact in urban areas most impacted by past intensive logging. The urban mature plot had higher mean soil pH at site (5.87, se: ±0.06) compared to a rural mature, and old growth reference sites located within the park. Although surface organic and A layer soil horizon depth was thinnest at the urban mature site, soil organic matter was not found to be significantly different across sites. Light detection and ranging (LiDAR) data showed that old-growth plots and plots in the middle section of the park had the highest degree of canopy structure as measured by Rumple and standard deviation of point elevation. Measures of stand height showed OG plots and urban plots to have the tallest trees. Rural plots showed a high degree of variability in all LiDAR metrics, showing a wider range of stand height and complexity than urban and middle plots.
These results suggest that past land-use and urban proximity affect plot level productivity, soil quality, and above-ground canopy structure in Forest Park. These results clarify how the lack of late-successional tree species might be most linked to differing histories of intensive logging activity within the park. Reduced old-growth legacy features (remnant seed trees, coarse woody debris) in plots with a clear history of aggressive clear-cuts has led to a reduction in regeneration of western hemlock and western red-cedar in the understory.
|
Page generated in 0.0402 seconds