• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ortogonalidade da Função de Möbius

Ramirez Aguirre, Josimar Joao 12 March 2014 (has links)
Dissertação (mestrado)—Universidade de Brasília, Instituto de Ciências Exatas, Departamento de Matemática, 2014. / Submitted by Larissa Stefane Vieira Rodrigues (larissarodrigues@bce.unb.br) on 2014-11-18T16:13:08Z No. of bitstreams: 1 2014_JosimarJoaoRamirezAguirre.pdf: 856243 bytes, checksum: 68723eae75bd1d8d1cbf7444fdd38e0b (MD5) / Approved for entry into archive by Raquel Viana(raquelviana@bce.unb.br) on 2014-11-24T17:20:13Z (GMT) No. of bitstreams: 1 2014_JosimarJoaoRamirezAguirre.pdf: 856243 bytes, checksum: 68723eae75bd1d8d1cbf7444fdd38e0b (MD5) / Made available in DSpace on 2014-11-24T17:20:13Z (GMT). No. of bitstreams: 1 2014_JosimarJoaoRamirezAguirre.pdf: 856243 bytes, checksum: 68723eae75bd1d8d1cbf7444fdd38e0b (MD5) / Nesta dissertação de Mestrado apresentamos uma nova prova do Teorema de Davenport (1937), e a prova de Terence Tao que a conjectura de Chowla implica a conjectura de Sarnak. Na primeira parte do trabalho apresentamos a teoria básica das L-funcões bem como uma variação método de Vinogradov, usando as identidades de Vaughan. Em seguida, usamos estas ferramentas para mostrar o Teorema de Davenport. A principal referência desta parte são os capítulos 5 e 13 do livro Analitic Number Theory de Henryk Iwaniec e Emmanuel Kowalski, [9]. A prova que a Conjectura de Chowla implica na Conjectura de Sarnak é baseada em princípio de grandes desvios, obtido por uma variação do método do segundo momento. A exposição é inspirada na primeira parte do artigo de Peter Sarnak, intitulado Three Lectures on the Mobius Function Randomness and Dynamics, [16]. _______________________________________________________________________________ ABSTRACT / In this Master's thesis we present a new proof of Davenport's Theorem (1937), and the Terence Tao's proof that Chowla conjecture implies Sarnak's conjecture. In the _rst part of this work we present the basic theory of L-functions and a variation of the Vinogradov's method using the Vaughan's identities. Then we use these tools to prove Davenport's Theorem. This section is based on chapters 5 and 13 of the reference Analytic Number Theory by Henryk Iwaniec and Emmanuel Kowalski, [9]. The Chowla's Conjecture implies Sarnak's Conjecture is based on a principle of large deviations obtained by variation of the second moment method. The exposition is inspired on the _rst part of Peter Sarnak's article entitled Three Lectures on the Mobius Function Randomness and Dynamics, [16].

Page generated in 0.0366 seconds