• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Teorema de Branges

Pérez Armijo, Jhonny Edward January 2013 (has links)
Presentaremos la demostración del Teorema probado por Louis de Branges en (1984): “Si f:D C es analítica e inyectiva cuya expansión de series de potencias es dada por ∑_(n=1)^∞▒〖a_n z^n 〗 con a_1 = 1, entonces |a_n |n para todo n  1. Además si la igualdad se da para algún n  1, entonces f(z)=z/〖(1-αz)〗^2 , pertenece a C, con |α|=1 y todo z en D, donde D es el disco unitario en el plano complejo”. En un primer momento, presentaremos las conjeturas de Robertson y de Bieberbach una vez que la conjetura de Milin implica la de Robertson, que a su vez alude a de Bieberbach. Lo que Branges probo, en verdad fue la conjetura propuesta por Milin en (1967), que afirma: “Si f:D C es analítica e inyectiva cuya expansión de series de potencias es dada por ∑_(n=1)^∞▒〖a_n z^n 〗 con a_1 = 1, entonces ∑_(m=1)^n▒∑_(k=1)^m▒〖(k|γ_k |^2- 1/k) ≤0〗 donde γ_k son los coeficientes de expansión de series de potencias de la función (1/2) log⁡(z^(-1) f(z))" la cual implica la conjetura de Bieberbach.

Page generated in 0.0711 seconds