• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 111
  • 34
  • 22
  • 11
  • 6
  • 6
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 253
  • 253
  • 87
  • 46
  • 44
  • 36
  • 34
  • 33
  • 31
  • 28
  • 25
  • 20
  • 20
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Studies of conjugated polymer thin film morphology: effect on emission and charge transport

Rozanski, Lynn June 28 August 2008 (has links)
Not available / text
32

Studies of conjugated polymer thin film morphology : effect on emission and charge transport

Rozanski, Lynn June, 1980- 24 August 2011 (has links)
Not available / text
33

The palladium catalyzed multicomponent synthesis of imidazoles and imidazole-containing [pi]-conjugated polymers /

Siamaki, Ali Reza, 1965- January 2008 (has links)
The primary goal of this study is to develop novel metal catalyzed multicomponent reaction methods to generate imidazoles and their derivatives. This is directed towards the assembly of poly-substituted imidazoles, imidazolones and imidazole-containing pi-conjugated polymers. These products are generated in one-pot from such basic components as imines, acid chlorides, carbon monoxide, and/or organostannanes, via the use of palladium catalysis. / In Chapter 2, the design of a new palladium catalyzed synthesis of highly substituted imidazoles from imines and acid chlorides is described. This reaction involves the palladium catalyzed generation of 1, 3-oxazolium-5-oxides (Munchnones); which are trapped with N-tosyl substituted imines via a 1, 3 dipolar cycloaddition reaction to form the final products. Overall, this provides a one step method to assemble imidazoles from imines and acid chlorides with excellent regiochemical control. The versatility of this process is demonstrated by the assembly of diversely substituted imidazoles, including those with aryl, alkyl, heterocyclic and vinyl substituents. / Chapter 3 describes a new, palladium catalyzed, five component coupling of imines, chloroformates, organotin reagents, carbon monoxide and ammonium acetate to form imidazolones. The key step in this process is the efficient formation of ketocarbamates via the carbonylative cross coupling type reaction of imines, chloroformates and organostannanes. These products can be easily converted into imidazolones via a cyclocondensation with ammonium acetate. / The synthesis of pi-conjugated imidazole-containing polymers is described in Chapter 4. This process is designed based upon our previous studies on palladium catalyzed multicomponent synthesis of imidazoles, developed in Chapter 2. It is shown that bifunctional monomers such as di-imines, di-acid chlorides and di-N-tosylimines can be coupled together to assemble pi-conjugated imidazole-containing oligomers and polymers utilizing this same palladium catalyzed reaction. This approach was used to create a novel library of conjugated imidazole polymers. By modifying the substituents on the polymer structures, the UV-vis absorbance and fluorescence excitation/emission spectra of these compounds are varied over a range of 150 nm. / In Chapter 5, the palladium catalyzed multicomponent polymerization is discussed in more detail. This includes the analysis of the end groups on the polymer backbone, as well as mechanistic studies into how the polymerization is terminated. These results suggest that the sulfinate anion liberated upon N-tosylimine cycloaddition may be non-innocent in this polymerization, and its presence could lead to termination of the growing polymer chain.
34

Reading the rainbow: tailoring the properties of electrochromic polymers

Kerszulis, Justin Adam 12 January 2015 (has links)
The completion of the color palette has yielded a family of electrochromic polymers (ECPs) each able to absorb in unique regions across the visible spectrum. Synthetically, by varying the electronic content of phenylene type moieties coupled with the donor 3,4-propylenedioxythiophene (ProDOT), high band gaps can be achieved absorbing short wavelength light, yielding a family of yellow-to-transmissive electrochromic polymers. Using the synthetic approach to tune specific absorptions in a discrete region of the visible spectrum, a family of electrochromic polymers that possess sharpened or broadened absorption spectra relative to electrochromic materials previously produced has been developed. By varying the steric hindrance of dioxythiophenes along a conjugated backbone, new hues of magenta and blue have been achieved. Through progressively adding more steric hindrance and twisting the polymer backbone, the absorbance of a polymer can be pushed towards shorter wavelengths, allowing more red light and less blue light to pass through a film. This unequal passing of long and short wavelengths reduces the overall purple color that is normally exhibited by a previous magenta ECP, thereby giving brighter, truer magenta colored materials. By reducing steric hindrance and relaxing the polymer backbone, the opposite can be achieved: pushing the absorbance of a polymer to longer wavelengths allows more blue and less red light to transmit. These polymers also exhibit highly transmissive oxidized states that are attainable at low potentials. In the quest to achieve black (or dark as defined by low L*) to transmissive ECPs with suitable contrast for window or eyewear applications, a relaxed donor-acceptor architecture has been explored. These materials give broad neutral state absorptions with a %Tint (380-780 nm) > 50 %, bringing these materials closer to realization.
35

Chemical hybridization of fullerenes, [pi]-electron systems and inorganic nanomaterials /

Liu, Dongfang. January 2008 (has links)
Thesis (Ph.D.)--Hong Kong University of Science and Technology, 2008. / "[pi]" appears in the title as a symbol. Includes bibliographical references. Also available in electronic version.
36

Ultrafast organic lasers and solid-state amplifiers /

Goossens, Mark. January 2007 (has links)
Thesis (Ph.D.) - University of St Andrews, April 2007.
37

Grafted and crosslinkable polyphenyleneethynylene synthesis, properties and their application /

Wang, Yiqing. January 2005 (has links)
Thesis (Ph. D.)--Chemistry and Biochemistry, Georgia Institute of Technology, 2006. / Tolbert, Laren, Committee Member ; Perahia, Dorva, Committee Member ; Perry, Joseph, Committee Member ; Collard, David, Committee Member ; Bunz, Uwe, Committee Chair.
38

Studies of conjugated polymer thin film morphology effect on emission and charge transport /

Rozanski, Lynn June, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
39

Morphology and microstructure control of conjugated polymer thin films for high performance field-effect transistors

Lei, Yanlian 19 August 2016 (has links)
Charge transport in semiconductor channels of organic field-effect transistors (FETs) depends largely on the molecular ordering of organic semiconductor molecules. This is particularly demanding for polymer-based FETs, where channel semiconductors are non-molecular in nature, and generally form semiconductor films of low crystallinity. As a result, great theoretical and practical interests have been directed towards facile solution processes that can transform a low molecular weight (MW) and low mobility conjugated polymer into a high crystalline order and high-mobility semiconductor. This research focuses on developing effective strategies for achieving high mobility as well as other desirable FET properties through properly controlling the morphology and molecular ordering of conjugated polymer channel layers. The relationships between morphologic/microstructural properties of the polymer semiconductor films and charge transport characteristics in the films are systematically investigated and elucidated. The purpose of this work is to achieve high performance solution-processed polymer FETs with high mobility, excellent ambient stability, and performance uniformity that display practical significance for application in next-generation electronics. In the first part of this thesis, functionalization of the gate dielectric surface by grafting highly ordered and dense coverage of hybrid silane self-assembled monolayers (SAMs) is discussed. A two-step solution-processed method using a combination of trichlorooctadecylsilane (OTS-18) and trichlorooctylsilane (OTS-8) has been developed to create high-performance hybrid dual-silane SAM on the surface of silicon dioxide (SiO2), thus enabling the achievement of both high field-effect mobility and current on/off ratio, together with other desirable FET properties. The hybrid SAM approach is also adopted for attaining high performing polymer FETs using a different SAM agent combination of phenyltrichlorosilane (PTS) and OTS-18. With the progress in functionalizing the surface of gate dielectric insulator by two-step grafting SAMs, the advancement in enhancing the crystalline structural order of the polymer channel layer is highlighted. This was realized by the incorporation of polar insulator of polyacrylonitrile (PAN) into the polymer semiconductor solution at appropriate loadings, enabling the formation of excellent semiconductor films with high crystalline order. PAN serves as an efficient mediating medium for the crystallization of polymer semiconductor, leading to the creation of large crystalline domains within the PAN matrix. A 1̃0-nm thick semiconductor layer with richer semiconductor crystalline domains is constructed near the vicinity of the gate dielectric surface, facilitating efficient charge conduction in the channel semiconductor. Enhancements in field-effect mobility by as much as about one order in magnitude and current on/off ratio of two to three orders in magnitude have been realized in polymer FETs. PAN incorporation also dramatically enhances the stability and processability of semiconductor solutions, enabling rapid fabrication of channel semiconductors in polymer FETs via common graphic art printing techniques such as inkjet printing for practical adoption. Another unique facile solution process which transforms a lower-MW and low-mobility conjugated polymer, e.g., diketopyrrolopyrrole-dithienylthieno[3,2-b] thiophene (DPP-DTT), into a high crystalline order and high-mobility nanowire network for high performance polymer FETs has been also developed in this work. This approach involves solution fabrication of a channel semiconductor film using a lower MW DPP-DTT/polystyrene blend system. With the help of cooperative shifting motions of polystyrene chain segments, an interpenetrating nanowire semiconductor network is readily self-assembled and crystallized out in the polystyrene matrix, and thereby providing significantly enhanced mobility (over 8 cm2 V-1 s-1) and current on/off ratio (107). Finally, the concept of generating polymer nanowire network in the effective photoactive channel is extended for the development of highly sensitive near-infrared (NIR) organic phototransistors (OPTs). The NIR-OPTs based on DPP-DTT nanowire network exhibit high responsivity of 2̃46 A W-1 under an NIR illumination source with the wavelength of 850 nm at a low intensity of ̃0.1 mW cm-2. This value is over one order in magnitude higher than that of the structurally identical planar DPP-DTT thin film based OPTs. The high performance of the nanowire network-based phototransistors is attributed to the excellent hole transport ability, reduced density of the structural defects in the polymer nanowire network, and improved contact at the channel layer/electrode interfaces. The high sensitivity and low cost solution-fabrication process render this OPT technology appealing and practically viable for application in large area NIR sensors.
40

The synthesis and characterisation of poly(p-phenylenevinylene)s

Halliday, David Alan January 1992 (has links)
No description available.

Page generated in 0.0506 seconds