• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Un arbre des formes pour les images multivariées / A Tree of shapes for multivariate images

Carlinet, Edwin 27 November 2015 (has links)
De nombreuses applications issues de la vision par ordinateur et de la reconnaissance des formes requièrent une analyse de l'image multi-échelle basée sur ses régions. De nos jours, personne ne considérerait une approche orientée « pixel » comme une solution viable pour traiter ce genre de problèmes. Pour répondre à cette demande, la Morphologie Mathématique a fourni des représentations hiérarchiques des régions de l'image telles que l'Arbre des Formes (AdF). L'AdF représente l'image par un arbre d'inclusion de ses lignes de niveaux. L'AdF est ainsi auto-dual et invariant au changement de contraste, ce qui fait de lui une structure bien adaptée aux traitements d'images de haut niveau. Néanmoins, il est seulement défini aux images en niveaux de gris et la plupart des tentatives d'extension aux images multivariées (e.g. en imposant un ordre total «arbitraire ») ne sont pas satisfaisantes. Dans ce manuscrit, nous présentons une nouvelle approche pour étendre l'AdF scalaire aux images multivariées : l'Arbre des Formes Multivarié (AdFM). Cette représentation est une « fusion » des AdFs calculés marginalement sur chaque composante de l'image. On vise à fusionner les formes marginales de manière « sensée » en préservant un nombre maximal d'inclusion. La méthode proposée a des fondements théoriques qui consistent en l'expression de l'AdF par une carte topographique de la variation totale curvilinéaire depuis la bordure de l'image. C'est cette reformulation qui a permis l'extension de l'AdF aux données multivariées. De plus, l'AdFM partage des propriétés similaires avec l'AdF scalaire ; la plus importante étant son invariance à tout changement ou inversion de contraste marginal (une sorte d'auto-dualité dans le cas multidimensionnel). Puisqu'il est évident que, vis-à-vis du nombre sans cesse croissant de données à traiter, nous ayons besoin de techniques rapides de traitement d'images, nous proposons un algorithme efficace qui permet de construire l'AdF en temps quasi-linéaire vis-à-vis du nombre de pixels et quadratique vis-à-vis du nombre de composantes. Nous proposons également des algorithmes permettant de manipuler l'arbre, montrant ainsi que, en pratique, l'AdFM est une structure facile à manipuler, polyvalente, et efficace. Finalement, pour valider la pertinence de notre approche, nous proposons quelques expériences testant la robustesse de notre structure aux composantes non-pertinentes (e.g. avec du bruit ou à faible dynamique) et nous montrons que ces défauts n'affectent pas la structure globale de l'AdFM. De plus, nous proposons des applications concrètes utilisant l'AdFM. Certaines sont juste des modifications mineures aux méthodes employant d'ores et déjà l'AdF scalaire mais adaptées à notre nouvelle structure. Par exemple, nous utilisons l'AdFM à des fins de filtrage, segmentation, classification et de détection d'objet. De ces applications, nous montrons ainsi que les méthodes basées sur l'AdFM surpassent généralement leur analogue basé sur l'AdF, démontrant ainsi le potentiel de notre approche / Nowadays, the demand for multi-scale and region-based analysis in many computer vision and pattern recognition applications is obvious. No one would consider a pixel-based approach as a good candidate to solve such problems. To meet this need, the Mathematical Morphology (MM) framework has supplied region-based hierarchical representations of images such as the Tree of Shapes (ToS). The ToS represents the image in terms of a tree of the inclusion of its level-lines. The ToS is thus self-dual and contrast-change invariant which make it well-adapted for high-level image processing. Yet, it is only defined on grayscale images and most attempts to extend it on multivariate images - e.g. by imposing an “arbitrary” total ordering - are not satisfactory. In this dissertation, we present the Multivariate Tree of Shapes (MToS) as a novel approach to extend the grayscale ToS on multivariate images. This representation is a mix of the ToS's computed marginally on each channel of the image; it aims at merging the marginal shapes in a “sensible” way by preserving the maximum number of inclusion. The method proposed has theoretical foundations expressing the ToS in terms of a topographic map of the curvilinear total variation computed from the image border; which has allowed its extension on multivariate data. In addition, the MToS features similar properties as the grayscale ToS, the most important one being its invariance to any marginal change of contrast and any marginal inversion of contrast (a somewhat “self-duality” in the multidimensional case). As the need for efficient image processing techniques is obvious regarding the larger and larger amount of data to process, we propose an efficient algorithm that can be build the MToS in quasi-linear time w.r.t. the number of pixels and quadraticw.r.t. the number of channels. We also propose tree-based processing algorithms to demonstrate in practice, that the MToS is a versatile, easy-to-use, and efficient structure. Eventually, to validate the soundness of our approach, we propose some experiments testing the robustness of the structure to non-relevant components (e.g. with noise or with low dynamics) and we show that such defaults do not affect the overall structure of the MToS. In addition, we propose many real-case applications using the MToS. Many of them are just a slight modification of methods employing the “regular” ToS and adapted to our new structure. For example, we successfully use the MToS for image filtering, image simplification, image segmentation, image classification and object detection. From these applications, we show that the MToS generally outperforms its ToS-based counterpart, demonstrating the potential of our approach
2

IRM du cerveau néonatal : segmentation et analyse du signal / Neonatal brain IRM : segmentation and signal analysis

Morel, Baptiste 13 June 2016 (has links)
L’essor de l’imagerie médicale par résonance magnétique (IRM) permet une exploration de plus en plus précise du cerveau en période néonatale. Comment interpréter le plus objectivement possible des images dont les particularités compliquent l’analyse ? La controverse autour des hyperintensités diffuses de la substance blanche (diffuse excessive high signal intensity, DEHSI) en est une illustration. Le premier objectif est d’étudier la variabilité des appréciations des radiologues. Il existe une bonne reproductibilité des mesures bidimensionnelles des structures cérébrales, mais une reproductibilité intra et inter-observateurs moyenne de l’analyse visuelle de l’intensité de signal de la substance blanche néonatale. Le second objectif est le développement d’une méthode de segmentation utilisant des outils de traitement d’images, essentiellement morphologiques, en particulier des opérateurs connexes. Elle permet de segmenter la substance grise, la substance blanche et le liquide cérébro-spinal à l’étage sus-tentoriel et détecter automatiquement la présence d’hyperintensités de la substance blanche. Une mesure normalisée de la sévérité de celles-ci par rapport à la substance blanche adjacente est calculée, ce qui constitue une contribution originale de la thèse. La validation des résultats sur des images acquises avec des champs magnétiques de 1,5 et 3 T par comparaison à des segmentations manuelles autorise l’utilisation de ce logiciel. La confrontation des résultats obtenus au suivi clinique à long terme de nouveau-nés permettra de mieux connaître et interpréter le développement cérébral visualisé en IRM et d’apporter une réponse face au défi que constituent les DEHSI. / Progress in magnetic resonance imaging (MRI) has allowed more detailed exploration of the development and maturation of the neonatal brain. Among the challenges facing radiologists are determining how best to objectively analyze images with very different characteristics when compared to older children. One issue is the “diffuse excessive high signal intensity” (DEHSI) of the white matter in premature newborns, whose definition, classification and prognosis have been vigorously debated. The role played in this analysis by the subjectivity of the radiological interpretation is not well understood. Our primary objective was to study the variability of this subjective analysis by the radiologist. Although reproducibility is acceptable for bi-dimensional measurement of brain structures, it is only fair for the analysis of signal intensity of brain white matter. The secondary objective was the design of a robust and reliable semi-automatic method to segment the gray matter, the white matter, and the cerebrospinal fluid and detect potential high signal intensity regions (it calculates a normalized mean value, and compares it to the normal surrounding white matter.). The algorithm is composed of an isotropic diffusion filter, morphological tools and connected operators, all implemented in a software interface. The results of this algorithm have been validated on MRI images acquired on 1.5 and 3 T devices by comparing them with segmentation results. This new tool could be employed in routine MRI. Correlation of the results with clinical outcomes in infants would permit a better understanding of cerebral development and, particularly, elucidate the significance of DEHSI.

Page generated in 0.0932 seconds