Spelling suggestions: "subject:"consciousnesschangeresearch"" "subject:"consciousnesses""
1 |
On the Nature of Neural Causality in Large-Scale Brain Networks: Foundations, Modeling and Nonlinear NeurodynamicsUnknown Date (has links)
We examine the nature of causality as it exists within large-scale brain networks by first providing a rigorous conceptual analysis of probabilistic causality as distinct from deterministic causality. We then use information-theoretic methods, including the linear autoregressive modeling technique of Wiener-Granger causality (WGC), and Shannonian transfer entropy (TE), to explore and recover causal relations between two neural masses. Time series data were generated by Stefanescu-Jirsa 3D model of two coupled network nodes in The Virtual Brain (TVB), a novel neuroinformatics platform used to model resting state large-scale networks with neural mass models. We then extended this analysis to three nodes to investigate the equivalence of a concept in probabilistic causality known as ‘screening off’ with a method of statistical ablation known as conditional Granger causality. Finally, we review some of the empirical and theoretical work of nonlinear neurodynamics of Walter Freeman, as well as metastable coordination dynamics and investigate what impact they have had on consciousness research. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2018. / FAU Electronic Theses and Dissertations Collection
|
Page generated in 0.0518 seconds