• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation and Improvement of the Residential Energy Hub Management System

Hashmi, Syed Ahsan January 2010 (has links)
Energy consumption in the residential sector of Ontario is expected to grow by 15%, most of which is expected to be from electricity use, with an annual average growth rate of 0.9% between 2010 and 2020. With Ontario government’s Integrated Power System Plan (IPSP) recommending phasing out coal fired generators by 2014, the execution of Conservation and Demand Management and Demand Response programs can have significant impact on reducing power consumption and peak demand in the province. Electricity generation, especially from fossil fuel, contributes 18% of total green house gas (GHG) emissions in Ontario. With climate change effects being attributed to GHG emissions and environmental regulations, it is necessary to reduce GHG emissions from power generation sector. In this context, the current Energy Hub Management System project, of which the work presented here is a part, may lead to the reduction of electricity power demand and GHG emissions in Ontario. This thesis presents the validation of Energy Hub Management System (EHMS) residential sector model. Performances of individual appliances and the results obtained from various case-studies considering the EHMS model are compared with respect to a base case representing a typical residential customer. The case-studies are carefully developed to demonstrate the capability of the EHMS model to generate optimum operational schedules to minimize energy costs, energy consumption and emissions based on user defined constraints and preferences. Furthermore, a forecasting methodology based on single variable econometric time series is developed to estimate day-ahead CO2 emissions from Ontario’s power generation sector. The forecasted emissions profile is integrated into the EHMS model to optimize a residential customer’s contribution to CO2 emissions in Ontario.
2

Evaluation and Improvement of the Residential Energy Hub Management System

Hashmi, Syed Ahsan January 2010 (has links)
Energy consumption in the residential sector of Ontario is expected to grow by 15%, most of which is expected to be from electricity use, with an annual average growth rate of 0.9% between 2010 and 2020. With Ontario government’s Integrated Power System Plan (IPSP) recommending phasing out coal fired generators by 2014, the execution of Conservation and Demand Management and Demand Response programs can have significant impact on reducing power consumption and peak demand in the province. Electricity generation, especially from fossil fuel, contributes 18% of total green house gas (GHG) emissions in Ontario. With climate change effects being attributed to GHG emissions and environmental regulations, it is necessary to reduce GHG emissions from power generation sector. In this context, the current Energy Hub Management System project, of which the work presented here is a part, may lead to the reduction of electricity power demand and GHG emissions in Ontario. This thesis presents the validation of Energy Hub Management System (EHMS) residential sector model. Performances of individual appliances and the results obtained from various case-studies considering the EHMS model are compared with respect to a base case representing a typical residential customer. The case-studies are carefully developed to demonstrate the capability of the EHMS model to generate optimum operational schedules to minimize energy costs, energy consumption and emissions based on user defined constraints and preferences. Furthermore, a forecasting methodology based on single variable econometric time series is developed to estimate day-ahead CO2 emissions from Ontario’s power generation sector. The forecasted emissions profile is integrated into the EHMS model to optimize a residential customer’s contribution to CO2 emissions in Ontario.
3

Temporal De-biasing of Behaviour in Residential Energy Consumption: Supporting Conservation Compliance Through Feedback Design

Trinh, Kevin 11 January 2011 (has links)
Despite years of research in residential energy conservation, means of inducing conservation behaviour through feedback are not well understood. In this thesis I take a novel approach to feedback design by addressing temporal inconsistencies that may hinder individuals from forming an intention to conserve. To help understand conservation compliance strategies, I proposed a visual framework to categorize interventions. I present two design heuristics that were inspired by temporal construal theory (Liberman & Trope, 2003). They were the impetus for the design of three feedback display prototypes, which were examined. Due to methodological limitations, significant improvements to compliance were not found. However, evidence suggests that comparative feedback may have supported reasoning about conservation rather than supporting conservation compliance directly. Future work includes refinement of feedback displays to avoid direct comparisons, exploring the use of nature imagery, and the study of a possible interaction between environmental values and comparative feedback on compliance.
4

Temporal De-biasing of Behaviour in Residential Energy Consumption: Supporting Conservation Compliance Through Feedback Design

Trinh, Kevin 11 January 2011 (has links)
Despite years of research in residential energy conservation, means of inducing conservation behaviour through feedback are not well understood. In this thesis I take a novel approach to feedback design by addressing temporal inconsistencies that may hinder individuals from forming an intention to conserve. To help understand conservation compliance strategies, I proposed a visual framework to categorize interventions. I present two design heuristics that were inspired by temporal construal theory (Liberman & Trope, 2003). They were the impetus for the design of three feedback display prototypes, which were examined. Due to methodological limitations, significant improvements to compliance were not found. However, evidence suggests that comparative feedback may have supported reasoning about conservation rather than supporting conservation compliance directly. Future work includes refinement of feedback displays to avoid direct comparisons, exploring the use of nature imagery, and the study of a possible interaction between environmental values and comparative feedback on compliance.

Page generated in 0.1544 seconds