Spelling suggestions: "subject:"constitutive model"" "subject:"constitutive godel""
1 |
A unified constitutive material model with application to machiningLiu, Rui 12 January 2015 (has links)
Finite element simulation of metal cutting processes offers a cost-effective method to optimize the cutting conditions and to select the right tool material and geometry. A key input to such simulations is a constitutive model that describes material behavior during severe plastic deformation. However, the vast majority of material models used in prior work are phenomenological in nature and are usually obtained by fitting a non-physically based mathematical equation to the macro-scale stress-strain response of the material. Moreover, the deformation range covered by the stress-strain response used in the model calibration process usually falls short of the ranges typically observed in metal cutting.
This thesis seeks to develop a unified material model that explicitly incorporates microstructure evolution into the constitutive law to describe the macro-scale plastic deformation response of the material valid over the range of strains, strain rates and temperatures experienced in machining. The proposed unified model is based on the underlying physics of interactions of mobile dislocations with different short and long range barriers and accounts for various physical mechanisms such as dynamic recovery and dynamic recrystallization. In addition, the inclusion of microstructure evolution into the constitutive model enables the prediction of microstructure in the chip and the machined surface. In this study, the unified material model is calibrated and validated in the severe plastic deformation regime characteristic of metal machining and is then implemented in finite element simulations to evaluate its ability to predict continuous and segmented chip formation in machining of pure metals such as OHFC copper and commercially-pure titanium (CP-Ti).
Due to the physical basis of the proposed unified material model, the continuous chip formation observed in orthogonal cutting of OFHC copper is shown to be successfully predicted by the finite element model utilizing a version of the unified material model that explicitly accounts for microstructure evolution as well as dislocation drag as a plausible deformation mechanism applicable at the high strain rates common in metal cutting operations. The segmented or shear localized chip formation in orthogonal cutting of CP-Ti is also shown to be successfully simulated by the unified model after incorporating the inverse Hall-Petch effect arising from the ultrafine grain structure within the shear band. For both metals, the model is experimentally validated using flow stress data as well as machining data including cutting and thrust forces and relevant chip morphology parameters. Machining simulations carried out using the unified material model also yield useful insights into the microstructure evolution during the machining process, which is shown to be consistent with the available experimental data and the known physical understanding of severe plastic deformation behavior of the metals.
|
2 |
Development and application of new constitutive models to simulate the hydraulic-mechanical behaviour of unsaturated swelling clayPriyanto Putro, Deni G. 14 September 2007 (has links)
Unsaturated swelling clays are used in engineered barriers for waste disposal facilities due to their self-sealing ability and low hydraulic conductivity. The characterization of unsaturated clay behaviour is required for design of these barriers. In recent years, several small-scale laboratory and full-scale field tests have been conducted to characterize the mechanical and hydraulic behaviour of the unsaturated swelling clay.
This focus of the present study is towards the development of constitutive models to simulate hydraulic and mechanical behaviour of precompacted unsaturated swelling clay, called the bentonite-sand buffer (BSB) material. Development, calibration, implementation, and application of the proposed constitutive models form the scope of the study.
The results of laboratory triaxial tests with controlled suction and suction measurements are used to calibrate the constitutive models presented. An algorithm, called the PEM (Parameter Evaluation Method), which is useful to estimate constitutive model parameters and evaluate the performance of constitutive models is proposed. This algorithm has been used to estimate the parameters of two elasto-plastic constitutive models (i.e., the BBM (Alonso et al. 1990) and the BGM (Blatz and Graham 2003)) based on the laboratory tests results on the BSB material.
New 3-dimensional porosity-dependent permeability model (kwn) and water retention surface (WRS) are developed in this study. The mathematical formulations of these models using parameters calibrated with laboratory tests conducted on the BSB material are provided. Implementation algorithms of the BBM, the BGM, the kwn, and the WRS in 2-phase flow hydraulic-mechanical (H-M) analysis using a 2D-finite difference method are also provided .
Three combinations of hydraulic and mechanical constitutive models (linear elastic model, BGM, vanGenuchten (1980) and kwn models) are used to simulate small-scale infiltration processes in the BSB material. Two types of tests, constant volume (CV) and constant mean stress (CMS) tests are simulated using 2D-finite difference H-M analysis.
The full-scale isothermal test (ITT) of AECL is modelled using 3 combinations of H-M constitutive models. The ITT experiment comprises of buffer, rock, and concrete materials. The selected combinations of H-M constitutive models are used in three types of analyses: buffer-only (BO); buffer-rock with 20x30m domain (BR); and time-dependent boundary conditions (BCt).
The results of the study show that the applications of the elasto-plastic mechanical constitutive models and porosity-dependent permeability (kwn) model are improvements over existing constitutive models to model this class of problem. The rock properties and applied boundary conditions are significant in modelling the ITT experiment. The application of the time-dependent boundary condition can reduce the uncertainty of the rock properties and boundary conditions within the rock, so that it improves the model ability to simulate the hydraulic-mechanical behaviour of unsaturated swelling clay. / October 2007
|
3 |
Development and application of new constitutive models to simulate the hydraulic-mechanical behaviour of unsaturated swelling clayPriyanto Putro, Deni G. 14 September 2007 (has links)
Unsaturated swelling clays are used in engineered barriers for waste disposal facilities due to their self-sealing ability and low hydraulic conductivity. The characterization of unsaturated clay behaviour is required for design of these barriers. In recent years, several small-scale laboratory and full-scale field tests have been conducted to characterize the mechanical and hydraulic behaviour of the unsaturated swelling clay.
This focus of the present study is towards the development of constitutive models to simulate hydraulic and mechanical behaviour of precompacted unsaturated swelling clay, called the bentonite-sand buffer (BSB) material. Development, calibration, implementation, and application of the proposed constitutive models form the scope of the study.
The results of laboratory triaxial tests with controlled suction and suction measurements are used to calibrate the constitutive models presented. An algorithm, called the PEM (Parameter Evaluation Method), which is useful to estimate constitutive model parameters and evaluate the performance of constitutive models is proposed. This algorithm has been used to estimate the parameters of two elasto-plastic constitutive models (i.e., the BBM (Alonso et al. 1990) and the BGM (Blatz and Graham 2003)) based on the laboratory tests results on the BSB material.
New 3-dimensional porosity-dependent permeability model (kwn) and water retention surface (WRS) are developed in this study. The mathematical formulations of these models using parameters calibrated with laboratory tests conducted on the BSB material are provided. Implementation algorithms of the BBM, the BGM, the kwn, and the WRS in 2-phase flow hydraulic-mechanical (H-M) analysis using a 2D-finite difference method are also provided .
Three combinations of hydraulic and mechanical constitutive models (linear elastic model, BGM, vanGenuchten (1980) and kwn models) are used to simulate small-scale infiltration processes in the BSB material. Two types of tests, constant volume (CV) and constant mean stress (CMS) tests are simulated using 2D-finite difference H-M analysis.
The full-scale isothermal test (ITT) of AECL is modelled using 3 combinations of H-M constitutive models. The ITT experiment comprises of buffer, rock, and concrete materials. The selected combinations of H-M constitutive models are used in three types of analyses: buffer-only (BO); buffer-rock with 20x30m domain (BR); and time-dependent boundary conditions (BCt).
The results of the study show that the applications of the elasto-plastic mechanical constitutive models and porosity-dependent permeability (kwn) model are improvements over existing constitutive models to model this class of problem. The rock properties and applied boundary conditions are significant in modelling the ITT experiment. The application of the time-dependent boundary condition can reduce the uncertainty of the rock properties and boundary conditions within the rock, so that it improves the model ability to simulate the hydraulic-mechanical behaviour of unsaturated swelling clay.
|
4 |
Development and application of new constitutive models to simulate the hydraulic-mechanical behaviour of unsaturated swelling clayPriyanto Putro, Deni G. 14 September 2007 (has links)
Unsaturated swelling clays are used in engineered barriers for waste disposal facilities due to their self-sealing ability and low hydraulic conductivity. The characterization of unsaturated clay behaviour is required for design of these barriers. In recent years, several small-scale laboratory and full-scale field tests have been conducted to characterize the mechanical and hydraulic behaviour of the unsaturated swelling clay.
This focus of the present study is towards the development of constitutive models to simulate hydraulic and mechanical behaviour of precompacted unsaturated swelling clay, called the bentonite-sand buffer (BSB) material. Development, calibration, implementation, and application of the proposed constitutive models form the scope of the study.
The results of laboratory triaxial tests with controlled suction and suction measurements are used to calibrate the constitutive models presented. An algorithm, called the PEM (Parameter Evaluation Method), which is useful to estimate constitutive model parameters and evaluate the performance of constitutive models is proposed. This algorithm has been used to estimate the parameters of two elasto-plastic constitutive models (i.e., the BBM (Alonso et al. 1990) and the BGM (Blatz and Graham 2003)) based on the laboratory tests results on the BSB material.
New 3-dimensional porosity-dependent permeability model (kwn) and water retention surface (WRS) are developed in this study. The mathematical formulations of these models using parameters calibrated with laboratory tests conducted on the BSB material are provided. Implementation algorithms of the BBM, the BGM, the kwn, and the WRS in 2-phase flow hydraulic-mechanical (H-M) analysis using a 2D-finite difference method are also provided .
Three combinations of hydraulic and mechanical constitutive models (linear elastic model, BGM, vanGenuchten (1980) and kwn models) are used to simulate small-scale infiltration processes in the BSB material. Two types of tests, constant volume (CV) and constant mean stress (CMS) tests are simulated using 2D-finite difference H-M analysis.
The full-scale isothermal test (ITT) of AECL is modelled using 3 combinations of H-M constitutive models. The ITT experiment comprises of buffer, rock, and concrete materials. The selected combinations of H-M constitutive models are used in three types of analyses: buffer-only (BO); buffer-rock with 20x30m domain (BR); and time-dependent boundary conditions (BCt).
The results of the study show that the applications of the elasto-plastic mechanical constitutive models and porosity-dependent permeability (kwn) model are improvements over existing constitutive models to model this class of problem. The rock properties and applied boundary conditions are significant in modelling the ITT experiment. The application of the time-dependent boundary condition can reduce the uncertainty of the rock properties and boundary conditions within the rock, so that it improves the model ability to simulate the hydraulic-mechanical behaviour of unsaturated swelling clay.
|
5 |
Vývoj kalibračních metod pro hypoplastické modely / Development of calibration methods for hypoplastic modelsŠula, Igor January 2018 (has links)
The calibration application named ExCalibre was developed at Technical University in Prague, Faculty of Civil Engineering. This application can automatically process experimental data and create set of parameters of hypoplastic models which are designed for saturated clays or sands. The aim of this master thesis was to support development of application for calibration with testing it on real experimental data sets. Automatic calibration of these data sets was compared with calibration by hand for identical data. The development of the application and main phase of testing took place in two stages, where the main calibration errors of calibration application were identified. After the final testing of application where the minor bugs and errors were overcome a user-friendly web application (soilmodel.com/excalibre/) was introduced. This final testing has gone beyond this thesis. The results from the main phases of testing are discussed in this thesis as well as the description of database of fine-grained and coarse-grained samples which were used to testing of application. Knowing the calibration of the model is crucial for its using, you can find description of the used constitutive models in this thesis, which are used in the calibration application, as well as a description of procedure for...
|
6 |
Aluminum microstructure evolution and effects on mechanical properties in quenching and aging processGuo, Guannan 31 July 2017 (has links)
"High strength aluminum alloys are recently widely used in aircraft, automobile and construction industry fields. Typical T6 heat treatment process can be applied to improve the heat treatable aluminum alloy in order to facilitate the formation of prime strengthening precipitate phases. Critical steps in T6 heat treatment process include solution treatment, quenching and aging. Due to high thermal gradients in quenching process and aging process, large thermal stress will remain in the matrix and may bring unexpected deformation or distortion in further machining. Therefore, in order to predict the thermal stress effects, constitutive model and precipitate hardening model are needed to simulate the mechanical properties of alloy. In this dissertation, an optimized constitutive model, which is used to describe the mechanical behavior during quenching and intermediate period of quenching and aging process, was given based on constitutive models with Zenor-Holloman parameter. Modification for constitutive model is based on the microstructure model, which is developed for the quenching and aging processes. Quench factor analysis method was applied to describe the microstructure evolution and volume fraction of primary precipitate phases during quenching process. Some experimental phenomena are discussed and explained by precipitate distributions. Classical precipitate hardening models were reviewed and two models were selected for Al-Cu-Mn alloy aging treatment. Thermal growth model and Euler algorithm were used to improve the accuracy and the selected precipitate hardening models were validated by yield stress and microstructure observations of Al-Cu-Mn aging response experiments."
|
7 |
A study of sand-asphalt mixtures: a constitutive model based on a thermomechanical framework and experimental corroborationRavindran, Parag 02 June 2009 (has links)
Asphalt bound mixtures have been put to diverse uses. The complicated nature of
the material and the demanding conditions under which it is used preclude complete
solutions to questions on load bearing capability under field conditions. In proportion
to the quantity of its usage and in acknowledgment of modeling complexity, the
material has been interrogated by many researchers using a variety of mechanical
tests, and a plethora of linear viscoelastic models have been developed. Most models
are intended to account for specific classes of problems.
This work addresses the conspicuous absence of systematic documentation of
normal forces generated as a result of shear. The normal force generated during simple
shear is a clear indication of the nonlinear nature of the material. The effect of fillers
(hydrated lime and limestone), air voids, aggregate gradation, asphalt source and step
loading on normal force generation during torsion is experimentally investigated.
Based on experimental evidence, a non-linear thermomechanical model for sandasphalt
mixtures based on the idea of multiple natural configurations is developed.
The model accounts for the fact that the mixture has a natural configuration (stressfree
configuration) which evolves as it is subjected to loads. Assumptions are made
regarding the manner in which the material stores and dissipates energy. A key assumption is that among the various constitutive relations possible, the one that is
chosen is the one that maximizes the rate of entropy production. The model that is
developed accounts for the anisotropic nature of the response.
The experimental results show that asphalt bound mixtures generate significant
normal forces even at low rotation rates. The source of asphalt, aggregate gradation,
fillers and air voids have a pronounced effect on normal stress generation. The model
is corroborated against data from torsion experiments.
|
8 |
Rheology of IonomersVorontsov, Sergey 27 May 2015 (has links)
No description available.
|
9 |
Constitutive modeling of slip, twinning, and untwinning in AZ31B magnesiumLi, Min 05 January 2006 (has links)
No description available.
|
10 |
Formulation and Implementation of a Constitutive Model for Soft RockHickman, Randall John 08 November 2004 (has links)
Petroleum reservoirs located in the Norwegian sector of the North Sea have undergone unexpected subsidence of great magnitude (> 10 m) during more than 30 years of petroleum recovery operations. Historical laboratory investigations have shown that the subsidence is due to the mechanical behavior and mechanical properties of chalk. Chalk behavior is characterized by elastoplasticity, including pore collapse, shear failure, and tensile failure mechanisms; rate-dependence; and pore fluid dependence. The research described in this dissertation was performed with the objectives to formulate a constitutive model which describes all aspects of chalk and soft rock mechanical behavior, develop and/or implement methods to integrate the equations which form the constitutive model, and to apply the model to finite element simulations of engineering problems encountered in chalk and soft rock.
A new rate-dependent constitutive model is developed based on a three-dimensional extension of a volumetric time-lines model, similar to that of Bjerrum (1967). Shear and tensile failure surfaces are also included to reflect these failure mechanisms observed in chalk. Twelve model parameters are required to fully describe chalk behavior. Procedures to determine values for each of these parameters from laboratory test results are described. Correlations of model parameter values with index parameters are given for North Sea chalks, to allow reasonable values to be obtained in the absence of an extensive laboratory testing program. Comparisons between observed behavior and model simulations indicate that the new model is able to reproduce and predict the behavior of chalk quite well.
A new integration method for critical state cap plasticity models is presented. This new method may be used for rate-independent or rate-dependent constitutive models which are formulated with elliptical cap yield surfaces, including the chalk model. The new method gives results that compare favorably to integration methods used currently, in terms of accuracy and computational effort.
The effects of pore fluid composition on chalk behavior are included in the constitutive model. It is shown that the variability in constitutive behavior with pore fluid composition is due to dependence of model parameter values on pore fluid composition. This variability in model parameters with pore fluid composition has been quantified and implemented into the model for the complete spectrum of oil-water mixtures in chalk.
Finite element simulations are presented to demonstrate performance of the model in analyzing problems at several different scales, including laboratory, borehole, and full-field scales. A new algorithm called "equivalent uniform water saturation" has been developed to determine the average mechanical properties of finite chalk masses with non-uniform pore fluid compositions, which are frequently encountered during finite element simulations. Results of the laboratory-scale simulations indicate that the constitutive model can reproduce the inhomogeneous deformation patterns which occur in chalk during waterflooding tests, and that use of the new algorithm utilizing "equivalent uniform water saturation" produces consistent results for chalk masses with inhomogeneous pore fluid distributions when used with different finite element mesh discretizations. Results of the larger-scale simulations indicate that changes in pore fluid composition and pore fluid pressure have different effects on macro-scale chalk mechanical behavior, and that both must be considered during analysis. / Ph. D.
|
Page generated in 0.0636 seconds