• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Nonlinear Effects in Contactless Ultrasound Energy Transfer Systems

Meesala, Vamsi Chandra 05 January 2021 (has links)
Ultrasound acoustic energy transfer (UAET) is an emerging contactless technology that offers the capability to safely and efficiently power sensors and devices while eliminating the need to replace batteries, which is of interest in many applications. It has been proposed to recharge and communicate with implanted medical devices, thereby eliminating the need for invasive and expensive surgery and also to charge sensors inside enclosed metal containers typically found in automobiles, nuclear power plants, space stations, and aircraft engines. In UAET, energy is transferred through the reception of acoustic waves by a piezoelectric receiver that converts the energy of acoustic waves to electrical voltage. It has been shown that UAET outperforms the conventional CET technologies that use electromagnetic waves to transfer energy, including inductive coupling and capacitative coupling. To date, the majority of research on UAET systems has been limited to modeling and proof-of-concept experiments, mostly in the linear regime, i.e., under small levels of acoustic pressure that result in small amplitude longitudinal vibrations and linearized piezoelectricity. Moreover, existing models are based on the "piston-like" deformation assumption of the transmitter and receiver, which is only accurate for thin disks and does not accurately account for radiation effects. The linear models neglect nonlinear effects associated with the nonlinear acoustic wave propagation as well as the receiver's electroelastic nonlinearities on the energy transfer characteristics, which become significant at high source strengths. In this dissertation, we present experimentally-validated analytical and numerical multiphysics modeling approaches aimed at filling a knowledge gap in terms of considering resonant acoustic-piezoelectric structure interactions and nonlinear effects associated with high excitation levels in UAET systems. In particular, we develop a reduced-order model that can accurately account for the radiation effects and validate it by performing experiments on four piezoelectric disks with different aspect ratios. Next, we study the role of individual sources of nonlinearity on the output power characteristics. First, we consider the effects of electroelastic nonlinearities. We show that these nonlinearities can shift the optimum load resistance when the acoustic medium is fluid. Next, we consider the nonlinear wave propagation and note that the shock formation is associated with the dissipation of energy, and as such, shock formation distance is an essential design parameter for high-intensity UAET systems. We then present an analytical approach capable of predicting the shock formation distance and validate it by comparing its prediction with finite element simulations and experimental results published in the literature. Finally, we experimentally investigate the effects of both the nonlinearity sources on the output power characteristics of the UAET system by considering a high intensity focused ultrasound source and a piezoelectric disk receiver. We determine that the system's efficiency decreases, and the maximum voltage output position drifts towards the source as the source strength is increased. / Doctor of Philosophy / Advancements in electronics that underpinned the development of low power sensors and devices have transformed many fields. For instance, it has led to the innovation of implanted medical devices (IMDs) such as pacemakers and neurostimulators that perform life-saving functions. They also find applications in condition monitoring and wireless sensing in nuclear power plants, space stations, automobiles and aircraft engines, where the sensors are enclosed within sealed metal containers, vacuum/pressure vessels or located in a position isolated from the operator by metal walls. In all these applications, it is desired to communicate with and recharge the sensors wirelessly. Such a mechanism can eliminate the need for invasive and expensive surgeries to replace batteries of IMDs and preserve the structural integrity of metal containers by eliminating the need for feed through wires. It has been shown that ultrasound acoustic energy transfer (UAET) outperforms conventional wireless power transfer techniques. However, existing models are based on several assumptions that limit their potential and do not account for effects that become dominant when a higher output power is desired. In this dissertation, we present experimentally validated numerical and theoretical investigations to fill those knowledge gaps. We also provide crucial design recommendations based on our findings for the efficient implementation of UAET technology.
12

Direct Assessment and Investigation of Nonlinear and Nonlocal Turbulent Constitutive Relations in Three-Dimensional Boundary Layer Flow

Gargiulo, Aldo 12 July 2023 (has links)
Three-dimensional (3D) turbulent boundary layers (TBLs) play a crucial role in determining the aerodynamic properties of most aero-mechanical devices. However, accurately predicting these flows remains a challenge due to the complex nonlinear and nonlocal physics involved, which makes it difficult to develop universally applicable models. This limitation is particularly significant as the industry increasingly relies on simulations to make decisions in high-consequence environments, such as the certification or aircraft, and high-fidelity simulation methods that don't rely on modeling are prohibitively expensive. To address this challenge, it is essential to gain a better understanding of the physics underlying 3D TBLs. This research aims to improve the predictive accuracy of turbulence models in 3D TBLs by examining the impact of model assumptions underpinning turbulent constitutive relations, which are fundamental building blocks of every turbulence model. Specifically, the study focuses on the relevance and necessity of nonlinear and nonlocal model assumptions for accurately predicting 3D TBLs. The study considers the attached 3D boundary layer flow over the textbf{Be}nchmark textbf{V}alidation textbf{E}xperiment for textbf{R}ANS/textbf{L}ES textbf{I}nvestiagtions (BeVERLI) Hill as a test case and corresponding particle image velocimetry data for the investigation. In a first step, the BeVERLI Hill experiment is comprehensively described, and the important characteristics of the flow over the BeVERLI Hill are elucidated, including complex symmetry breaking characteristics of this flow. Reynolds-averaged Navier-Stokes simulations of the case using standard eddy viscosity models are then presented to establish the baseline behavior of local and linear constitutive relations, i.e., the standard Boussinesq approximation. The tested eddy viscosity models fail in the highly accelerated hill top region of the BeVERLI hill and near separation. In a further step, several nonlinear and nonlocal turbulent constitutive relations, including the QCR model, the model by Gatski and Speziale, and the difference-quotient model by Egolf are used as metrics to gauge the impact of nonlinearities and nonlocalities for the modeling of 3D TBLs. It is shown that nonlinear and nonlocal approaches are essential for effective 3D TBL modeling. However, simplified reduced-order models could accurately predict 3D TBLs without high computational costs. A constitutive relation with local second-order nonlinear mean strain relations and simplified nonlocal terms may provide such a minimal model. In a final step, the structure and response of non-equilibrium turbulence to continuous straining are studied to reveal new scaling laws and structural models. / Doctor of Philosophy / Airplanes and other flying objects rely on the way air flows around them to generate lift and stay in the sky. This airflow can be very complex, especially close to the surface of the object, where it is affected by friction with the object. This friction generates a layer of air called a boundary layer, which can become turbulent and lead to complex patterns of airflow. The boundary layer is generated by the friction between the air and the surface of the object, which causes the air molecules to "stick" to the surface. This sticking creates a layer of slow-moving air that slows down the flow of air around the object. This loss of momentum creates drag, which is one of the main factors that resist the motion of objects in the air. The slowing of the air flow in the boundary layer is due to the viscosity of the air, which is a measure of how resistant the air is to deformation. The molecules in the air have a tendency to stick together, making it difficult for them to move past each other. This resistance causes the momentum of the air to be lost as it flows over the surface of the object because air molecules close to the surface "pull" on the ones farther away. Understanding how turbulent boundary layers (TBLs) work is essential to accurately predict the airflow around these objects using computer simulations. However, it's challenging because TBLs involve complex physics that are difficult to model accurately. This research focuses on a specific type of TBL called a three-dimensional (3D) TBL. This study looks at how different assumptions affect the accuracy of computer simulations that predict this type of airflow. It is found that using more complex models that take into account nonlinear and nonlocal physics can help predict 3D TBLs more accurately. However, these models are computationally expensive, and it is also found that simpler models can work well enough and are cheaper. This research further establishes important physical relations of the mechanisms pertaining 3D TBLs that could support the advancement of current models.
13

Фракционо и тополошко уопштење једначине телеграфичара као модел електричног вода / Frakciono i topološko uopštenje jednačine telegrafičara kao model električnog voda / Fractional and topological generalization of telegraphers’s equation intansmission line modeling

Cvetićanin Stevan 27 October 2017 (has links)
<p>Предмет истраживања су фракциона и тополошка уопштења једначине<br />телеграфичара као модела електричног вода. Фракционо уопштење се<br />огледа у томе што су класичне конститутивне релације електричних<br />елемената замењене фракционим. Модификација конститутивних<br />релација омогућује да се узму у обзир коначно време релаксације и<br />поларизације диелектрика, као и формирања магнетског поља, односно<br />историја процеса поларизације и магнетизације. Тополошко уопштење<br />огледа се у томе што елементарно коло вода, поред стандардних<br />елемената, има кондензатор и у редној грани којим се моделира ефекат<br />нагомилавања наелектрисања дуж елекричног вода, односно коначно<br />време релаксације.</p> / <p>Predmet istraživanja su frakciona i topološka uopštenja jednačine<br />telegrafičara kao modela električnog voda. Frakciono uopštenje se<br />ogleda u tome što su klasične konstitutivne relacije električnih<br />elemenata zamenjene frakcionim. Modifikacija konstitutivnih<br />relacija omogućuje da se uzmu u obzir konačno vreme relaksacije i<br />polarizacije dielektrika, kao i formiranja magnetskog polja, odnosno<br />istorija procesa polarizacije i magnetizacije. Topološko uopštenje<br />ogleda se u tome što elementarno kolo voda, pored standardnih<br />elemenata, ima kondenzator i u rednoj grani kojim se modelira efekat<br />nagomilavanja naelektrisanja duž elekričnog voda, odnosno konačno<br />vreme relaksacije.</p> / <p>The subject of research is the fractional and topological generalization of the<br />telegraphers&rsquo;s equation in transmission line modeling. The fractional<br />generalization is reflected in the fact that the classical constitutive relations of<br />electrical elements are replaced by the fractional ones. The modification of<br />constitutive relations allows for taking into account the finite relaxation and<br />polarization time of dielectric material, as well as the creation of the magnetic<br />field, it also allows for taking into account the history of polarization and<br />magnetization processes. The topological generalization of the elementary<br />circuit of transmission line, in addition to the standard elements, introduces a<br />capacitor in the series branch, which models the effect of charge<br />accumulation along the transmission line, i.e., the finite relaxation time.</p>
14

Lumbar Skin Strain Fields in the Context of Skin Adhered Wearables

Gibbons, Andrew Kent 14 August 2023 (has links) (PDF)
A comprehensive background is herein presented for lumbar skin strain and its effect on skin adhered wearable (SAW) products. A background of the development of computational models of the interaction of skin and novel SAWs being researched is also presented. These include products involving the use of high deflection strain gauges to measure skin strain during functional movements (FMs) as a method to address the complicated phenotyping of the etiological causes of low back pain (LBP). The background concludes with the mathematical calculation of the principal skin strain magnitudes and orientations using retroreflective marker coordinate data in a motion capture lab setting and the potential role of principal skin strain on the post-operative management of wounds to accelerate healing and minimize infection and scarring. The mechanics response of lumbar skin among 30 participants was measured during various FMs, for which high strain movements (Flexion, Flexion right/left, Sit To Stand) exhibited principal strain magnitudes repeatedly above 50% while others (Rotation right/left, Lateral Bending right/left, Extension, and Extension right/left) exhibited magnitudes repeatedly below 50%. Principal strain orientation was presented in easily visualizable mappings that demonstrated minimal variability both within and between participants for a given FM. Principal strain rates were measured, ranging between 25% and 151% per second among movements. The mechanics response of lumbar skin was again measured for a single participant, albeit this time between bare skin and skin with a SAW; which in this example was kinesiology tape with a high deflection nanocomposite strain gauge. Results indicated very significant skin restriction during Flexion, for which a macroscopic skin strain of 65% was reduced to 22% because of the KT tape and additionally down to 13% because of the addition of the sensor (on top of the KT tape). A FEM was created based off this scenario, for which it was shown that the mechanical properties of skin in vitro are insufficient in representing the mechanical response of skin due to its stiffness. This was hypothesized to be due to the increased hydration (lower stiffness) of in vivo skin, for which high deformation stiffness in the literature is not available. The thesis is concluded with future research directions that would benefit the design of SAWs where high deformation is considered. Future research directions are also discussed regarding post-operative wound healing and the potential role of repeated skin strains, such as concerning scarring and infection.

Page generated in 0.1258 seconds