• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 31
  • 5
  • 3
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 48
  • 48
  • 48
  • 11
  • 10
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Mathematical Model for Instrumentation Configuration

Jones, Charles H. 10 1900 (has links)
ITC/USA 2010 Conference Proceedings / The Forty-Sixth Annual International Telemetering Conference and Technical Exhibition / October 25-28, 2010 / Town and Country Resort & Convention Center, San Diego, California / This paper describes a model of how to configure settings on instrumentation. For any given instrument there may be 100s of settings that can be set to various values. However, randomly selecting values for each setting is not likely to produce a valid configuration. By "valid" we mean a set of setting values that can be implemented by each instrument. The valid configurations must satisfy a set of dependency rules between the settings and other constraints. The formalization provided allows for identification of different sets of configurations settings under control by different systems and organizations. Similarly, different rule sets are identified. A primary application of this model is in the context of a multi-vendor system especially when including vendors that maintain proprietary rules governing their systems. This thus leads to a discussion of an application user interface (API) between different systems with different rules and settings.
2

On Some Combinatorial Optimization Problems : Algorithms and Complexity

Uppman, Hannes January 2015 (has links)
This thesis is about the computational complexity of several classes of combinatorial optimization problems, all related to the constraint satisfaction problems. A constraint language consists of a domain and a set of relations on the domain. For each such language there is a constraint satisfaction problem (CSP). In this problem we are given a set of variables and a collection of constraints, each of which is constraining some variables with a relation in the language. The goal is to determine if domain values can be assigned to the variables in a way that satisfies all constraints. An important question is for which constraint languages the corresponding CSP can be solved in polynomial time. We study this kind of question for optimization problems related to the CSPs. The main focus is on extended minimum cost homomorphism problems. These are optimization versions of CSPs where instances come with an objective function given by a weighted sum of unary cost functions, and where the goal is not only to determine if a solution exists, but to find one of minimum cost. We prove a complete classification of the complexity for these problems on three-element domains. We also obtain a classification for the so-called conservative case. Another class of combinatorial optimization problems are the surjective maximum CSPs. These problems are variants of CSPs where a non-negative weight is attached to each constraint, and the objective is to find a surjective mapping of the variables to values that maximizes the weighted sum of satisfied constraints. The surjectivity requirement causes these problems to behave quite different from for example the minimum cost homomorphism problems, and many powerful techniques are not applicable. We prove a dichotomy for the complexity of the problems in this class on two-element domains. An essential ingredient in the proof is an algorithm that solves a generalized version of the minimum cut problem. This algorithm might be of independent interest. In a final part we study properties of NP-hard optimization problems. This is done with the aid of restricted forms of polynomial-time reductions that for example preserves solvability in sub-exponential time. Two classes of optimization problems similar to those discussed above are considered, and for both we obtain what may be called an easiest NP-hard problem. We also establish some connections to the exponential time hypothesis.
3

Harnessing tractability in constraint satisfaction problems

Carbonnel, Clément 07 December 2016 (has links) (PDF)
The Constraint Satisfaction Problem (CSP) is a fundamental NP-complete problem with many applications in artificial intelligence. This problem has enjoyed considerable scientific attention in the past decades due to its practical usefulness and the deep theoretical questions it relates to. However, there is a wide gap between practitioners, who develop solving techniques that are efficient for industrial instances but exponential in the worst case, and theorists who design sophisticated polynomial-time algorithms for restrictions of CSP defined by certain algebraic properties. In this thesis we attempt to bridge this gap by providing polynomial-time algorithms to test for membership in a selection of major tractable classes. Even if the instance does not belong to one of these classes, we investigate the possibility of decomposing efficiently a CSP instance into tractable subproblems through the lens of parameterized complexity. Finally, we propose a general framework to adapt the concept of kernelization, central to parameterized complexity but hitherto rarely used in practice, to the context of constraint reasoning. Preliminary experiments on this last contribution show promising results.
4

SAT Encodings of Finite CSPs

Nguyen, Van-Hau 30 March 2015 (has links) (PDF)
Boolean satisfiability (SAT) is the problem of determining whether there exists an assignment of the Boolean variables to the truth values such that a given Boolean formula evaluates to true. SAT was the first example of an NP-complete problem. Only two decades ago SAT was mainly considered as of a theoretical interest. Nowadays, the picture is very different. SAT solving becomes mature and is a successful approach for tackling a large number of applications, ranging from artificial intelligence to industrial hardware design and verification. SAT solving consists of encodings and solvers. In order to benefit from the tremendous advances in the development of solvers, one must first encode the original problems into SAT instances. These encodings should not only be easily generated, but should also be efficiently processed by SAT solvers. Furthermore, an increasing number of practical applications in computer science can be expressed as constraint satisfaction problems (CSPs). However, encoding a CSP to SAT is currently regarded as more of an art than a science, and choosing an appropriate encoding is considered as important as choosing an algorithm. Moreover, it is much easier and more efficient to benefit from highly optimized state-of-the-art SAT solvers than to develop specialized tools from scratch. Hence, finding appropriate SAT encodings of CSPs is one of the most fascinating challenges for solving problems by SAT. This thesis studies SAT encodings of CSPs and aims at: 1) conducting a comprehensively profound study of SAT encodings of CSPs by separately investigating encodings of CSP domains and constraints; 2) proposing new SAT encodings of CSP domains; 3) proposing new SAT encoding of the at-most-one constraint, which is essential for encoding CSP variables; 4) introducing the redundant encoding and the hybrid encoding that aim to benefit from both two efficient and common SAT encodings (i.e., the sparse and order encodings) by using the channeling constraint (a term used in Constraint Programming) for SAT; and 5) revealing interesting guidelines on how to choose an appropriate SAT encoding in the way that one can exploit the availability of many efficient SAT solvers to solve CSPs efficiently and effectively. Experiments show that the proposed encodings and guidelines improve the state-of-the-art SAT encodings of CSPs.
5

SAT Encodings of Finite CSPs

Nguyen, Van-Hau 27 February 2015 (has links)
Boolean satisfiability (SAT) is the problem of determining whether there exists an assignment of the Boolean variables to the truth values such that a given Boolean formula evaluates to true. SAT was the first example of an NP-complete problem. Only two decades ago SAT was mainly considered as of a theoretical interest. Nowadays, the picture is very different. SAT solving becomes mature and is a successful approach for tackling a large number of applications, ranging from artificial intelligence to industrial hardware design and verification. SAT solving consists of encodings and solvers. In order to benefit from the tremendous advances in the development of solvers, one must first encode the original problems into SAT instances. These encodings should not only be easily generated, but should also be efficiently processed by SAT solvers. Furthermore, an increasing number of practical applications in computer science can be expressed as constraint satisfaction problems (CSPs). However, encoding a CSP to SAT is currently regarded as more of an art than a science, and choosing an appropriate encoding is considered as important as choosing an algorithm. Moreover, it is much easier and more efficient to benefit from highly optimized state-of-the-art SAT solvers than to develop specialized tools from scratch. Hence, finding appropriate SAT encodings of CSPs is one of the most fascinating challenges for solving problems by SAT. This thesis studies SAT encodings of CSPs and aims at: 1) conducting a comprehensively profound study of SAT encodings of CSPs by separately investigating encodings of CSP domains and constraints; 2) proposing new SAT encodings of CSP domains; 3) proposing new SAT encoding of the at-most-one constraint, which is essential for encoding CSP variables; 4) introducing the redundant encoding and the hybrid encoding that aim to benefit from both two efficient and common SAT encodings (i.e., the sparse and order encodings) by using the channeling constraint (a term used in Constraint Programming) for SAT; and 5) revealing interesting guidelines on how to choose an appropriate SAT encoding in the way that one can exploit the availability of many efficient SAT solvers to solve CSPs efficiently and effectively. Experiments show that the proposed encodings and guidelines improve the state-of-the-art SAT encodings of CSPs.
6

Zobecňování výsledků týkajících se problému splnitelnosti podmínek na nekonečné algebry / Generalizing CSP-related results to infinite algebras

Olšák, Miroslav January 2019 (has links)
The recent research on constraint satisfaction problems (CSPs) on fixed finite templates provided useful tools for computational complexity and universal algebra. However, the research mainly focused on finite relational structures, and consequently, finite algebras. We pursue a generalization of these tools and results into the domain of infinite algebras. In particular, we show that despite the fact that the Maltsev condition s(r, a, r, e) = s(a, r, e, a) does not characterize Taylor algebras (i.e., algebras that satisfy a nontrivial idem- potent Maltsev condition) in general, as it does in the finite case, there is another strong Maltsev condition characterizing Taylor algebras, and s(r, a, r, e) = s(a, r, e, a) characterizes another interesting broad class of algebras. We also provide a (weak) Maltsev condition for SD(∧) algebras (i.e., algebras that satisfy an idem- potent Maltsev condition not satisfiable in a module). Beyond Maltsev conditions, we study loop lemmata and, in particular, reprove a well known finite loop lemma by two different general (infinite) approaches.
7

Modelling and Exploiting Structures in Solving Propositional Satisfiability Problems

Pham, Duc Nghia, n/a January 2006 (has links)
Recent research has shown that it is often preferable to encode real-world problems as propositional satisfiability (SAT) problems and then solve using a general purpose SAT solver. However, much of the valuable information and structure of these realistic problems is flattened out and hidden inside the corresponding Conjunctive Normal Form (CNF) encodings of the SAT domain. Recently, systematic SAT solvers have been progressively improved and are now able to solve many highly structured practical problems containing millions of clauses. In contrast, state-of-the-art Stochastic Local Search (SLS) solvers still have difficulty in solving structured problems, apparently because they are unable to exploit hidden structure as well as the systematic solvers. In this thesis, we study and evaluate different ways to effectively recognise, model and efficiently exploit useful structures hidden in realistic problems. A summary of the main contributions is as follows: 1. We first investigate an off-line processing phase that applies resolution-based pre-processors to input formulas before running SLS solvers on these problems. We report an extensive empirical examination of the impact of SAT pre-processing on the performance of contemporary SLS techniques. It emerges that while all the solvers examined do indeed benefit from pre-processing, the effects of different pre-processors are far from uniform across solvers and across problems. Our results suggest that SLS solvers need to be equipped with multiple pre-processors if they are ever to match the performance of systematic solvers on highly structured problems. [Part of this study was published at the AAAI-05 conference]. 2. We then look at potential approaches to bridging the gap between SAT and constraint satisfaction problem (CSP) formalisms. One approach has been to develop a many-valued SAT formalism (MV-SAT) as an intermediate paradigm between SAT and CSP, and then to translate existing highly efficient SAT solvers to the MV-SAT domain. In this study, we follow a different route, developing SAT solvers that can automatically recognise CSP structure hidden in SAT encodings. This allows us to look more closely at how constraint weighting can be implemented in the SAT and CSP domains. Our experimental results show that a SAT-based mechanism to handle weights, together with a CSP-based method to instantiate variables, is superior to other combinations of SAT and CSP-based approaches. In addition, SLS solvers based on this many-valued weighting approach outperform other existing approaches to handle many-valued CSP structures. [Part of this study was published at the AAAI-05 conference]. 3. Finally, we propose and evaluate six different schemes to encode temporal reasoning problems, in particular the Interval Algebra (IA) networks, into SAT CNF formulas. We then empirically examine the performance of local search as well as systematic solvers on the new temporal SAT representations, in comparison with solvers that operate on native IA representations. Our empirical results show that zChaff (a state-of-the-art complete SAT solver) together with the best IA-to-SAT encoding scheme, can solve temporal problems significantly faster than existing IA solvers working on the equivalent native IA networks. [Part of this study was published at the CP-05 workshop].
8

Parallel Pattern Search in Large, Partial-Order Data Sets on Multi-core Systems

Ekpenyong, Olufisayo January 2011 (has links)
Monitoring and debugging distributed systems is inherently a difficult problem. Events collected during the execution of distributed systems can enable developers to diagnose and fix faults. Process-time diagrams are normally used to view the relationships between the events and understand the interaction between processes over time. A major difficulty with analyzing these sets of events is that they are usually very large. Therefore, being able to search through the event-data sets can enable users to get to points of interest quickly and find out if patterns in the dataset represent the expected behaviour of the system. A lot of research work has been done to improve the search algorithm for finding event-patterns in large partial-order datasets. In this thesis, we improve on this work by parallelizing the search algorithm. This is useful as many computers these days have more than one core or processor. Therefore, it makes sense to exploit this available computing power as part of an effort to improve the speed of the algorithm. The search problem itself can be modeled as a Constraint Satisfaction Problem (CSP). We develop a simple and efficient way of generating tasks (to be executed by the cores) that guarantees that no two cores will ever repeat the same work-effort during the search. Our approach is generic and can be applied to any CSP consisting of a large domain space. We also implement an efficient dynamic work-stealing strategy that ensures the cores are kept busy throughout the execution of the parallel algorithm. We evaluate the efficiency and scalability of our algorithm through experiments and show that we can achieve efficiencies of up to 80% on a 24-core machine.
9

Building Multi-agent System to Solve Distributed Constraint Satisfaction Problems for Supply Chain Management

Lin, You-Yu 09 July 2003 (has links)
In this thesis, I propose an agent-based cooperative model for supply chains to commit orders by satisfying constraints. Due to the limitation of the real world environment, the centralized schedule model to handle constraint satisfaction is impractical, it is important to excise the distributed constraint satisfaction model to meet the outsourcing paradigm of supply chain management. I introduce a multi-agent system based coordination mechanism that integrates theories of negotiation and distributed constraint satisfaction problem to resolve the constraints in supply chain. I adopt the asynchronous weak-commitment search, a DCSP algorithm to resolve the global constraint in supply chain. Asynchronous weak-commitment search is complete backtracking algorithms that guarantee to find a solution if there is a solution existing and asynchronous weak-commitment search provide priority dynamic mechanism that help us to find a solution quickly than other backtracking algorithms. We construct a coordination agent for each business entity in supplier chain. The agent embedded in the ability to resolve the constraints autonomously. We expect this agent-based coordination mechanism can make supply chain more efficient and enhance supply chain's agility.
10

The Approximability of Learning and Constraint Satisfaction Problems

Wu, Yi 07 October 2010 (has links)
An α-approximation algorithm is an algorithm guaranteed to output a solutionthat is within an α ratio of the optimal solution. We are interested in thefollowing question: Given an NP-hard optimization problem, what is the bestapproximation guarantee that any polynomial time algorithm could achieve? We mostly focus on studying the approximability of two classes of NP-hardproblems: Constraint Satisfaction Problems (CSPs) and Computational Learning Problems. For CSPs, we mainly study the approximability of MAX CUT, MAX 3-CSP,MAX 2-LINR, VERTEX-PRICING, as well as serval variants of the UNIQUEGAMES.• The problem of MAX CUT is to find a partition of a graph so as to maximizethe number of edges between the two partitions. Assuming theUnique Games Conjecture, we give a complete characterization of the approximationcurve of the MAX CUT problem: for every optimum value ofthe instance, we show that certain SDP algorithm with RPR2 roundingalways achieve the optimal approximation curve.• The input to a 3-CSP is a set of Boolean constraints such that each constraintcontains at most 3 Boolean variables. The goal is to find an assignmentto these variables to maximize the number of satisfied constraints.We are interested in the case when a 3-CSP is satisfiable, i.e.,there does exist an assignment that satisfies every constraint. Assumingthe d-to-1 conjecture (a variant of the Unique Games Conjecture), weprove that it is NP-hard to give a better than 5/8-approximation for theproblem. Such a result matches a SDP algorithm by Zwick which givesa 5/8-approximation problem for satisfiable 3-CSP. In addition, our resultalso conditionally resolves a fundamental open problem in PCP theory onthe optimal soundness for a 3-query nonadaptive PCP system for NP withperfect completeness.• The problem of MAX 2-LINZ involves a linear systems of integer equations;these equations are so simple such that each equation contains atmost 2 variables. The goal is to find an assignment to the variables so asto maximize the total number of satisfied equations. It is a natural generalizationof the Unique Games Conjecture which address the hardness ofthe same equation systems over finite fields. We show that assuming theUnique Games Conjecture, for a MAX 2-LINZ instance, even that thereexists a solution that satisfies 1−ε of the equations, it is NP-hard to findone that satisfies ² of the equations for any ε > 0.

Page generated in 0.1817 seconds