Spelling suggestions: "subject:"5construction een boys lamellarité"" "subject:"5construction een boys lamellitaloista""
1 |
Dynamique incendie dans un compartiment en bois massif avec surfaces exposées : prédictions à l'aide d'un modèle analytiqueGirompaire, Luc Lionel 26 March 2024 (has links)
Thèse ou mémoire avec insertion d'articles. / Malgré un engouement grandissant pour la construction massive en bois, celle-ci est limitée dans les codes du bâtiment pour des raisons de sécurité incendie. Au Canada le code restreint la construction en bois massif à certain groupe d'usage principal. Une solution de rechange peut toutefois être élaborée grâce à l'ingénierie de la sécurité incendie. Cette conception par objectifs de performance peut nécessiter des essais à grande échelle coûteux en temps et financièrement. Selon la complexité du scénario, ces essais pourraient être remplacés par une approche analytique plus rapide et moins dispendieuse. L'objectif du projet était de développer un modèle analytique prédisant la dynamique incendie, ainsi que la profondeur de carbonisation, lors d'un incendie dans un compartiment de construction massive en bois, ayant diverses quantités de bois exposé. L'analyse de quatre modèles existants a mis en lumière la nécessité de prendre en compte l'impact de la concentration d'oxygène et du flux thermique incident à la surface des éléments en bois sur leur vitesse de carbonisation. Le modèle à deux zones développé prédit le débit calorifique, la température et la concentration d'oxygène dans la couche de gaz chauds, ainsi que la profondeur de carbonisation des éléments en bois exposés. Les prédictions ont été comparées à 20 essais de feu de compartiment de construction massive en bois totalement ou partiellement encapsulé qui ont été réalisés au fil des dernières années. Les analyses qualitatives et quantitatives ont démontré que le modèle prédit fidèlement la dynamique générale des incendies expérimentaux. Les profondeurs de carbonisation prédites sont conservatrices et proches des valeurs expérimentales. Cinq limites du modèle et pistes d'améliorations ont été identifiées pour les versions futures du modèle. Le modèle développé devrait faciliter et soutenir la conception par performance de bâtiments en bois massif, ainsi que de potentiels changements pour augmenter les limites prescriptives sur l'exposition d'élément en bois massif dans les codes du bâtiment. / Despite a growing interest, mass-timber construction is currently limited by most building codes mainly due to fire safety concerns. In Canada, the building code restricts mass timber construction to a limited group of major occupancy. However, an alternative solution can be developed through fire safety engineering. This performance base design can require large-scale tests that are costly and time consuming. Depending on the complexity of the scenario, these tests could be replaced by a faster and less expensive analytical approach. The objective of the project was to develop an analytical model predicting the fire dynamics as well as the char depth during fire in mass timber construction compartment with different amounts of exposed surfaces. The analysis of four existing model highlights the necessity to account for the impact of the heat flux impinging on the surface and the oxygen concentration, on the timber element charring rate. The developed two-zone model predicts the heat release rate (HRR), the upper-layer temperature and oxygen concentration, as well as the char depth of exposed timber element. The model predictions were compared to 20 experimental mass timber compartment fires partially or fully encapsulated that were recently over the past few years. The qualitative and quantitative analysis showed that the model captures well the general fire dynamic i.e., HRR and temperature. Five limitations and improvements have been discussed and will be considered in future versions of this model. The developed model will facilitate and support performance-based fire design of timber buildings as well as potential changes to increase the prescriptive limits of exposed mass timber in building codes.
|
2 |
De la conception à la préfabrication numérique 3D : pour le développement d'une architecture écoresponsable en bois à géométrie complexeTolszczuk-Leclerc, Zoé 07 May 2018 (has links)
Alors que les principes de développement durable, d’écologie du bâtiment et d’efficacité énergétique prennent une place toujours plus importante dans le design architectural, le CLT, par ses caractéristiques intrinsèques, est un matériau de construction idéal pour une architecture écoresponsable. Cependant, les bâtiments en CLT aspirant à offrir de bonnes performances énergétiques sont généralement limités par les directives et règles de conception, ce qui encourage peu les expérimentations formelles qui permettraient d’explorer des stratégies passives alternatives basées sur la forme du bâtiment. Le mémoire vise à démontrer qu’une approche de conception intégrée conjuguée avec la précision et la diversité des éléments issus de la fabrication numérique permet dorénavant aux architectes d’intégrer des formes et des espaces complexes dans la conception de bâtiments en CLT. Par un processus de recherche -création, le projet de recherche démontre qu’il est possible d’effectuer des explorations formelles tout en validant la composition structurelle et en générant les détails d’assemblage de la structure. L’utilisation d’une seule et unique interface de travail, nommément un logiciel de modélisation paramétrique 3D, simplifie le travail du concepteur. Ce logiciel permet en effet un partage aisé du modèle entre les différents professionnels associés au projet et, en plus, il génère les fichiers de découpe pour les machines-outils à commande numérique, ce qui contribue à une réalisation plus efficace. / While the principles of sustainable development, building ecology and energy efficiency are becoming ever more important in architectural design, the CLT, by its intrinsic characteristics, is an ideal building material for eco-responsible architecture. However, CLT buildings aspiring to provide good energy performance are generally constrained by design guidelines and rules, which does not encourage formal experiments that would explore alternative passive strategies based on the shape of the building.The purpose of the dissertation is to demonstrate that an integrated design approach combined with the precision and diversity of the elements of digital fabrication now allows architects to integrate complex shapes and spaces into CLT building design. Through a research-creation process, the research project demonstrates that it is possible to carry out formal explorations while validating the structural composition and generating the assembly details of the structure. The use of a single work interface, namely 3D parametric software, simplifies the work of the designer. This software makes it easy to share the model among the various professionals associated with the project and, in addition, it generates the cutting files for CNC machine tools, which contributes to a more efficient realization.
|
3 |
Spécificités physiques et enjeux de la performance énergétique du CLT en milieu nordiqueMartin, Ulysse 31 August 2018 (has links)
Le bois a été l’un des premiers matériaux utilisés par l’homme et possède encore aujourd’hui beaucoup de potentiel dans la construction. En effet, de nombreux matériaux d’ingénierie ont été développés à partir du bois, comme les panneaux de bois lamellé-croisé (CLT). Ces matériaux permettent d’être compétitifs avec le béton ou l’acier en termes de performance, de coût et d’empreinte environnementale. L’extraction des ressources, la fabrication de matériaux de construction et la construction elle-même (transport et machinerie) sont énergivores et à l’origine d’importants dégagements de gaz à effet de serre. Le bois est une ressource renouvelable qui a l’avantage de fixer du carbone lors de sa croissance et de le conserver une fois en service. Durant sa vie utile, un bâtiment va aussi consommer de l’énergie pour le chauffage / la climatisation et l’éclairage. C’est pourquoi la recherche de l’efficacité énergétique est nécessaire. Le CLT est un matériau d’ingénierie qui a le potentiel de démocratiser les bâtiments de moyenne hauteur en bois. En cela le CLT est avantageux pour la performance énergétique, puisque les panneaux font un effet barrière à l’air, à la vapeur et à la chaleur. Dans le système constructif en CLT, les jonctions avec les autres panneaux et les percements sont les principaux chemins de fuites pour l’air. Les infiltrations/exfiltrations vont être responsables d’importantes pertes thermiques. De plus, les exfiltrations peuvent induire une humidité excessive en présence de chaleur dans le mur, provoquant la croissance de moisissure et de pourriture du bois. La résistance des matériaux et la santé des occupants peuvent être compromises à moyen et long terme. Le but de ce projet est d’évaluer l’impact des tolérances d’assemblages, en présence d’une fuite d’air, sur la performance énergétique et la durabilité du mur afin de vérifier si les tolérances d’assemblages représentent un risque à prendre en considération ou non. Des thermographies d’une jonction en angle de murs en CLT prises lors d’une dépressurisation du bâtiment ont permis d’identifier une fissure. Un travail de modélisation de la fissure en fonction des températures observables a ensuite permis de dimensionner la fissure (0,72 mm traversant l’isolation) en considérant une tolérance d’assemblage pour le CLT de 2 mm. Cette fissure « modèle » a ensuite été transposée dans le cas d’un mur plat, afin que ne soit pas considéré le pont thermique lié à l’angle. Une analyse de l’impact sur la performance énergétique de tolérances d’assemblages variables a été réalisée par simulation informatique, pour une infiltration et une exfiltration. La simulation a également permis d’analyser l’impact sur la durabilité, en termes de développements fongiques et de risque de condensation, d’une exfiltration sur notre fissure « modèle ». La simulation a montré que l’impact d’une infiltration sur la performance énergétique est 1,62 fois plus grand que pour une exfiltration, qui est elle-même 1,37 fois plus énergivore qu’un mur sans fissure. L’influence de la largeur de la tolérance d’assemblage est minorée par la dimension de la fissure dans le reste du mur. La simulation des échanges hygriques dans la fissure a montré que la croissance de moisissure est à craindre en surface, lorsque l’humidité relative de l’air est de 40 % et plus. La zone touchée est principalement l’isolation, mais s’étend jusqu’au CLT à mesure que l’humidité relative de l’air exfiltré augmente. L’humidité de l’air condense à proximité de la sortie de l’exfiltration, ce qui peut mener à une accumulation de givre sous le revêtement extérieur. Le résultat de ces simulations permet de mettre l’accent sur l’importance de la continuité du pare-air et de la mise en place de mesures pour éviter qu’une tolérance d’assemblage soit un chemin libre pour l’air. L’utilisation de joints adhésifs souples pouvant épouser la découpe irrégulière du CLT et amortir les variations dimensionnelles permettrait de réduire les risques liés aux fuites d’air. / Wood is one of the first material mankind used to work with and is still full of potential for building sector. Many engineering materials have been developed from wood, such as the cross-laminated timber (CLT). Wooden engineering materials are as performant as steel and concrete but are also cost effective and have a lower environmental footprint. Resources extraction for the manufacture of building materials and the building phase itself require a lot of energy, and generate or release important amount of greenhouse gaz. Wood is a sustainable resource that has the benefit of being able to capture carbon during its growing phase and to preserve it. In service, buildings will have heating and cooling loads, depending of their energy efficiency, high energy efficiency is required to lower the overall energy footprint of buildings. CLT has the potential to be a greener substitute to reinforced concrete in the mid-rise building. CLT helps to reach energy efficiency because wood panels act as a barrier for air, vapor and heat. In CLT building system, junctions between panels and with other elements (ducts, wiring, etc) are the main leakage paths through the envelope. Infiltrations and exfiltrations are responsible for important heat losses. Exfiltrations can also lead to excessive moisture accumulation in the walls, resulting in mold and rot growth. Structural integrity and air quality can be jeopardized on the average/long term. The aim of this project was to assess the impact of gaps between CLT panels, in case of air leakages, on the energy efficiency and durability of the wall. A real case of infiltration in a corner of a CLT building was used to size an air leakage area in the insulation (0.72 mm through the insulation considering a 1 m high wall), intended an assembly tolerance or gap of 2 mm. The gap was then extrapolated to a flat wall, to exclude the thermal bridge effect of the corner. An energy efficiency assessment was done using simulations for both cases of infiltration and exfiltration, with variable assembly gap. Simulation also permits to assess the impact on durability, on mold growth risks, of the exfiltration for variable exfiltrated air relative humidity. Results show that infiltration has a greater impact (1.62 times) than exfiltration, which is itself 1.37 times more energy-consuming than a perfect wall. The impact of the assembly gap variations in the CLT is restricted by a maximum flow rate dicted by the air leakage path in the insulation. Simulation of moisture transfer shows that mold growth is to fear on the gap surface through the wall, when the exfiltrated air relative humidity exceeds 40 %. The first mold development should primarily affects the insulation, but extends to the CLT as the relative humidity of the exfiltrated air increases. Condensation occurs in the insulation near the outlet of the exfiltration, leading to an accumulation of ice behind the external cladding. Results of simulations show how important it is to keep the air barrier continuous, and to avoid that assembly gaps in the CLT act as shortcut for eventual air leaks. The use of flexible adhesive joints, which can match the irregular cut of the CLT and dampen the dimensional variations would reduce the risks of air leakage.
|
Page generated in 0.5803 seconds