• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Intelligent hazard identification: Dynamic visibility measurement of construction equipment operators

Ray, Soumitry J. 26 March 2014 (has links)
Struck-by fatalities involving heavy equipment such as trucks and cranes accounted for 24.6% of the fatalities between 1997-2007 in the construction industry. Limited visibility due to blind spots and travel in reverse direction are the primary causes of these fatalities. Blind spots are spaces surrounding an equipment that are invisible to the equipment operator. Thus, a hazard is posed to the ground personnel working in the blind spaces of an equipment operator. This research presents a novel approach to intelligently identify potential hazards posed to workers operating near an equipment by determining the visible and blind space regions of an equipment operator in real-time. A depth camera is used to estimate the head posture of the equipment operator and continuously track the head location and orientation using Random Forests algorithm. The head posture information is then integrated with point cloud data of the construction equipment to determine both the visible and the blindspots region of the equipment operator using Ray-Casting algorithm. Simulation and field experiments were carried out to validate this approach in controlled and uncontrolled environment respectively. Research findings demonstrate the potential of this approach to enhance safety performance by detecting hazardous proximity situations.

Page generated in 0.2543 seconds