• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Representing the planned vs. as-built story for linear projects in urban environment using data visualization

Zeb, Jehan 05 1900 (has links)
Very large sets of multi-source, multi-dimensional and time varying data are generated during the execution of construction projects, especially large-scale infrastructure projects. Emphasized in this thesis is how data visualization can provide important insights during the planning, implementation and post project analysis phases of linear projects in an urban environment, which are attended by a complex working environment and multiple stakeholders. These insights can lead to enhanced communication and better decision making. Thesis objectives are four fold: (i) examine how the representation of a schedule using linear planning charts can assist with assessing the quality of a schedule in terms of the construction strategy, communicate schedule intent to projects participants, and assist with telling the as-built story; (ii) explore images useful for representing multi source, multi-dimensional, time varying as-built construction data in support of management functions specifically with regards to communication and decision making; (iii) demonstrate the ability of visual representations of construction data to assist in telling the as-built story of a project in a manner that provides useful insights to project participants; and, (iv) critique the images presented in light of the data visualization principles and interaction tools identified, and suggest improvements as appropriate and possibly other images, including properties desired. In addressing these objectives, the methodology involved a review of computer science and construction literature as it pertains to data visualization and a case study of a past project which reflected the scale and complexity of planning and executing linear projects in an urban environment. The planned and as-built story were captured from the available data depicting the contractor’s perspective in the project’s product, process, and as-built views which were replicated in a research software system called REPCON software. This system supports selected data visualization capabilities, which were examined and critiqued as part of this thesis. It is demonstrated that data visualization is a powerful paradigm for gaining insights into the quality of a project’s plan and for understanding a project’s as-built performance. Greater benefits could be achieved by exploiting cutting edge visualization tools and by designing and implementing a more comprehensive set of images.
2

Representing the planned vs. as-built story for linear projects in urban environment using data visualization

Zeb, Jehan 05 1900 (has links)
Very large sets of multi-source, multi-dimensional and time varying data are generated during the execution of construction projects, especially large-scale infrastructure projects. Emphasized in this thesis is how data visualization can provide important insights during the planning, implementation and post project analysis phases of linear projects in an urban environment, which are attended by a complex working environment and multiple stakeholders. These insights can lead to enhanced communication and better decision making. Thesis objectives are four fold: (i) examine how the representation of a schedule using linear planning charts can assist with assessing the quality of a schedule in terms of the construction strategy, communicate schedule intent to projects participants, and assist with telling the as-built story; (ii) explore images useful for representing multi source, multi-dimensional, time varying as-built construction data in support of management functions specifically with regards to communication and decision making; (iii) demonstrate the ability of visual representations of construction data to assist in telling the as-built story of a project in a manner that provides useful insights to project participants; and, (iv) critique the images presented in light of the data visualization principles and interaction tools identified, and suggest improvements as appropriate and possibly other images, including properties desired. In addressing these objectives, the methodology involved a review of computer science and construction literature as it pertains to data visualization and a case study of a past project which reflected the scale and complexity of planning and executing linear projects in an urban environment. The planned and as-built story were captured from the available data depicting the contractor’s perspective in the project’s product, process, and as-built views which were replicated in a research software system called REPCON software. This system supports selected data visualization capabilities, which were examined and critiqued as part of this thesis. It is demonstrated that data visualization is a powerful paradigm for gaining insights into the quality of a project’s plan and for understanding a project’s as-built performance. Greater benefits could be achieved by exploiting cutting edge visualization tools and by designing and implementing a more comprehensive set of images.
3

Representing the planned vs. as-built story for linear projects in urban environment using data visualization

Zeb, Jehan 05 1900 (has links)
Very large sets of multi-source, multi-dimensional and time varying data are generated during the execution of construction projects, especially large-scale infrastructure projects. Emphasized in this thesis is how data visualization can provide important insights during the planning, implementation and post project analysis phases of linear projects in an urban environment, which are attended by a complex working environment and multiple stakeholders. These insights can lead to enhanced communication and better decision making. Thesis objectives are four fold: (i) examine how the representation of a schedule using linear planning charts can assist with assessing the quality of a schedule in terms of the construction strategy, communicate schedule intent to projects participants, and assist with telling the as-built story; (ii) explore images useful for representing multi source, multi-dimensional, time varying as-built construction data in support of management functions specifically with regards to communication and decision making; (iii) demonstrate the ability of visual representations of construction data to assist in telling the as-built story of a project in a manner that provides useful insights to project participants; and, (iv) critique the images presented in light of the data visualization principles and interaction tools identified, and suggest improvements as appropriate and possibly other images, including properties desired. In addressing these objectives, the methodology involved a review of computer science and construction literature as it pertains to data visualization and a case study of a past project which reflected the scale and complexity of planning and executing linear projects in an urban environment. The planned and as-built story were captured from the available data depicting the contractor’s perspective in the project’s product, process, and as-built views which were replicated in a research software system called REPCON software. This system supports selected data visualization capabilities, which were examined and critiqued as part of this thesis. It is demonstrated that data visualization is a powerful paradigm for gaining insights into the quality of a project’s plan and for understanding a project’s as-built performance. Greater benefits could be achieved by exploiting cutting edge visualization tools and by designing and implementing a more comprehensive set of images. / Applied Science, Faculty of / Civil Engineering, Department of / Graduate

Page generated in 0.2211 seconds