Spelling suggestions: "subject:"contact angles"" "subject:"contact ingles""
1 |
Factors influencing adhesion behaviour of tablet film coatsLennon, Kieran James January 2002 (has links)
No description available.
|
2 |
Wetting properties of stainless steel surfacesChimezie, Ugochi, Srinivas Gurram, Akhila January 2016 (has links)
Systematic pre cleaning, disinfection and sterilization of medical equipment used in examination and treatment of patients are very important for safe care of the patients and the staff handling these instruments. Due to the technical properties of stainless steel, its hygienic experience and the sophisticated look of the stainless steel, it has dominated the medical health care environments for decades. The wetting properties of stainless steel surfaces are presumed to be essential for the process of clean ability and for a wide variety of bio compatibility.In collaboration with the topical company for this thesis, the idea is to find the correlation between the surface properties of various stainless steel in relation to their wetting and spreading ability to enable efficient cleaning of the surface. For a substrate surface to be thoroughly cleaned of any debris or soil, it should be able to allow proper adherence of the liquid across its surface to a certain degree good enough to ensure good wettability of the surface and conversely easy and proper removal of any attached soil on the surface. Higher demand on cleaning, disinfection and sterilization processes became more and more pressing due the development of complex medical equipment.Different stainless steel (316L) surface finishes and some surgical equipment are investigated using the state of the equipment at Halmstad University. Using the imaging interferometer and mapping software, Mountain Map, the results obtained is controlled readings and classification of the various surface parameters. Contact angle measurements were carried out on each surface with three polar (Distilled water, Glycerol and Ethylene glycol) and one non polar (Olive Oil) probe liquids with a drop volume of 3μm using Theta Optical Tensiometer and One Attention Software for the analysis. The impact and correlations of the surface parameters on wettability was later compared from the measurements obtained.
|
3 |
The Effect Of Viscoelastic Surfactants Used In Carbonate Matrix Acidizing On WettabilityAdejare, Oladapo 2012 May 1900 (has links)
Carbonate reservoirs are heterogeneous; therefore, proper acid placement/diversion is required to make matrix acid treatments effective. Viscoelastic surfactants (VES) are used as diverting agents in carbonate matrix acidizing. However, these surfactants can adversely affect wettability around the wellbore area.
Lab and field studies show that significant amounts of VES are retained in the reservoir, even after an EGMBE postflush. Optimizing acid treatments requires a study of the effect of VES on wettability.
In a previous study using contact angle experiments, it was reported that spent acid solutions with VES only, and with VES and EGMBE are water-wetting.
In this thesis, we studied the effect of two amphoteric amine-oxide VES', designated as "A" and "B" on the wettability of Austin cream chalk using contact angle experiments. We extended the previous study by using outcrop rocks prepared to simulate reservoir conditions, by demonstrating that VES adsorbs on the rock using two-phase titration experiments, by studying the effect of temperature on wettability and adsorption, and by developing a detailed procedure for contact angle experiments.
We found that for initially oil-wet rocks, simulated acid treatments with VES "A" and "B" diversion stages and an EGMBE preflush and postflush made rocks water-wet at 25, 80, and 110 degrees C. Simulated acid treatments with a VES "A" diversion stage only made rocks water-wet at 25 degrees C. Our results suggest that both VES formulations cause a favorable wettability change for producing oil.
The two-phase titration experiments show that both VES "A" and "B" adsorb on the rock surface.
From our literature review, many surfactant wettability studies use contact angle measurements that represent advancing contact angles. However, wettability during stimulation is represented by receding contact angles. Results of static receding contact angles may be misinterpreted if low oil-acid IFT's cause oil droplets to spread. Spreading could be a reflection of the effect of the surfactants on the fluid-fluid interface rather than the rock-fluid interface. The new procedure shows the effect of VES and EGMBE on the rock-fluid interface only, and so represents the actual wettability.
|
4 |
Computational Modeling of Droplet Impact Dynamics on Solid SubstratesSaravanan Manikkam, Pratulya Rajan 31 January 2023 (has links)
A computational model is developed to simulate the impact dynamics of a droplet on solid substrates with the purpose of predicting the droplet spreading characteristics over time. Previous studies focused on finding relations between the impact parameters and outcome dynamics. A modified approach like the one used in this project revolves around modeling the moving contact lines at the interface in a multiphase flow environment. Focusing on research from an aircraft de-icing point of view, this study is considered a prerequisite in understanding the physics of droplet impact. The primary focus is on extending the application to incorporate super-cooled environments. Development of the model involved the use of the Volume-of-Fluid function coupled with the High-Resolution Interface Capturing scheme to model the moving contact line. The evolution of the moving contact line is modeled with contact angles as their inputs to understand the effect of the surface tension forces. Contact angle modeling is based on the Blended-Kistler method, which captures the contact angle evolution based on the surface tension and capillary number. Preliminary validation performed on the model proves its effectiveness in accurately simulating the impact behavior when compared to the literature, where the spread diameter and height agree well with experiments. The validated model is also compared to the in-house experiments performed at the Cavitation and Multiphase flow laboratory using different substrate materials. The substrates each show unique behavior - Impact on Glass results in the droplet depositing on the surface. Aluminum results in a full rebound and PET-G, results in a drop ejection. Based on inputs from the experiments - contact angles, spread diameter, and the maximum spread $beta$, show good agreement in comparison to the literature. / Master of Science / Computational model developed to simulate the impact dynamics of the droplet on solid surfaces, which predicts the evolution of the droplet over time in order to analyze the effect of the surface and properties of the fluid on the behavior of the droplet on impact. Focusing on research from an aircraft de-icing point of view, this study is considered a pre-requisite in understanding the physics of droplet impact, with potential scope in extending the simulation to applications at temperatures lower than $0^{circ}$ C. A model developed with the help of basic governing equations in fluid mechanics helps capture the effect of interactions between different physical states. The angle at which the droplet interacts with the surface (Contact Angle) and the diameter evolution (d/D) help us understand the effectiveness of the model to simulate droplet impact. Preliminary validation of the model is performed with respect to the literature where the droplet diameter evolution and the height variation match well with the experiments, which was the major criterion in determining the accuracy of the model. This model is compared to the in-house experiments performed at the Cavitation and Multiphase flow laboratory on different surfaces such as Glass, Aluminum, and Plastic (PET-G). The surfaces each show unique behavior with impact on Glass having the droplet deposit on the surface, aluminum resulting in the droplet bouncing after hitting the surface, and PET-G resulting in a small droplet being ejected from the bigger droplet which eventually deposits on the surface. Conclusions from the comparison between the experiments and the numerical simulation show how the model is effective in capturing the impact behavior on surfaces like glass in comparison to surfaces like Aluminum in this case that repels water.
|
5 |
Functionalisation of polyolefins and its effects on surface chemistry and energeticsPopat, Rohit P. January 1995 (has links)
The surface functionalisation of polyethylene and polypropylene by industrial and laboratory scale corona treatments and by laboratory flame treatment was studied. The surface sensitive techniques of X-ray photoelectron spectroscopy (XPS), attenuated total reflection infra-red spectroscopy (FTIR-ATR), contact angle measurement and electron microscopy (SEM and TEM) were employed. Corona and flame treatments resulted in incorporation of oxygen only into the surfaces of both polyethylene and polypropylene, resulting in improved surface wettabilities. A variety of oxygen functional groups were introduced by the two treatments. The industrial and laboratory scale treatments of both polymers were found to be similar in terms of the oxygen concentrations incorporated and surface wettabilities achieved. The presence of significant amounts of chain scission products were indicated on corona treated surfaces, while only minimal quantities were indicted on flame treated surfaces. This was attributed to their volatilisation during flame treatment. Introduction of sulfur dioxide into the flame and corona regions during treatment resulted in significant improvements in surface wettability. Incorporation of sulfur and nitrogen resulted from the presence of sulfur dioxide. A possible mechanism involving the formation of sulfonic acid groups and ammonium sulfonate groups was suggested. An oxidation depth model developed for use with variable take-off angle XPS showed that significantly deeper oxidation occurred in the presence of sulfur dioxide. Corona treatment was more effective in improving surface wettabilities than flame treatment, this being attributed to heat induced functional group reorientation during flame . treatment for polyethylene and to differences in surface chemistry resulting from the two treatments in the case of polypropylene. The surface wettability of poly ethylene was more readily improved than the surface wettability of polypropylene after all the treatments investigated. A method for estimating functional group concentrations using chemical derivatisation and contact angle measurement was developed. Functional group estimates for flame treated polyethylene were found to be in good agreement with chemical derivatisation used in conjunction with XPS measurements.
|
6 |
Hydrophobic and superhydrophobic coatings for corrosion protection of steelEjenstam, Lina January 2015 (has links)
Since metals in general, and steels in particular, are vital construction materials in our modern society, the corrosion protection of said materials is of great importance, both to ensure safety and to reduce costs associated to corrosion. Previously, chromium (VI) and other harmful substances were effectively used to provide corrosion protection to steel, but since their use was heavily regulated around year 2000, no coating has yet been developed that, in a fully satisfactory manner, replaces their corrosion protective properties.In this thesis, the use of hydrophobic and superhydrophobic surface coatings as part of corrosion protective coating systems has been studied. Since the corrosion mechanism relies on the presence of water to take place, the use of a superhydrophobic coating to retard the penetration of water to an underlying metal surface is intuitive. The evaluation of corrosion protective properties of the hydrophobic and superhydrophobic surfaces was performed using mainly contact angle measurements and electrochemical measurements in severely corrosive 3 wt% NaCl water solution.First, the differences in corrosion protection achieved when employing different hydrophobic wetting states were investigated using a model alkyl ketene dimer wax system. It was found that superhydrophobicity in the Lotus state is superior to the other states, when considering fairly short immersion times of less than ten days. This is due to the continuous air film that can form between such a superhydrophobic surface and the electrolyte, which can retard the transport of electrolyte containing corrosive ions to the metal surface to the point where the electrical circuit is broken. Since corrosion cannot occur unless an electrical current is flowing, this is a very efficient way of suppressing corrosion.An air layer on an immersed superhydrophobic surface is, however, not stable over long time, and to investigate long-term corrosion protection using hydrophobic coatings a polydimethylsiloxane formulation containing hydrophobic silica nanoparticles was developed. This system showed enhancement in corrosion protective properties with increasing particles loads, up until the point where the particle load instead causes the coating to crack (at 40 wt%). The conclusion is that the hydrophobicity of the matrix and filler, in combination with the elongatedivdiffusion path supplied by the addition of particles, enhanced the corrosion protection of the underlying substrate.To further understand how hydrophobicity and particle addition affect the corrosion protective properties of a coating a three layer composite coating system was developed. Using this coating system, consisting of a polyester acrylate base coating, covered by TiO2 particles (with diameter < 100 nm) and finally coated with a thin hexamethyl disiloxane coating, it was found that both hydrophobicity and particles are needed to reach a great enhancement in corrosion protective properties also for this system. / Eftersom metaller, och då särskilt stål, är viktigta konstruktionsmaterial i vårt moderna samhälle är korrosionsskydd av stor betydelse, både för att garantera säkerhet och för att minska kostnader som uppkommer i samband med korrosion. Tidigare har sexvärt krom och andra skadliga ämnen använts för att på ett effektivt sätt skydda stål från korrosion, men efter att deras användning kraftigt reglerades runt år 2000 har ännu ingen beläggning utvecklats som helt kan ersätta krombeläggningarna med avseende på funktion.I denna avhandling har hydrofoba och superhydrofoba ytbeläggningar och deras möjliga applikation som en del av ett korrosionsskyddande beläggningssystem studerats. Eftersom korrosionsmekanismen är beroende av närvaron av vatten, är användandet av en superhydrofob beläggning för att fördröja transporten av vatten till den underliggande metallytan intuitiv. De korrosionsskyddande egenskaperna hos superhydrofoba ytbeläggningar utvärderades här främst med hjälp av kontaktvinkelmätningar och elektrokemisk utvärdering i korrosiv lösning bestående av 3 vikts% NaCl i vatten.Först undersöktes skillnaden i korrosionsskydd som uppnås vid användandet av ytbeläggningar med olika hydrofoba vätningsregimer med hjälp av ett modellsystem bestående av ett alkylketendimer vax. Det konstaterades att superhydrofobicitet i Lotusregimen är överlägset bättre än de andra hydrofoba vätningsregimerna, i alla fall när man ser till relativt korta exponeringstider, typiskt mindre än tio dagar. Detta beror på att den kontinuerliga luftfilm som kan bildas på en sådan typ av superhydrofob yta kan minska transporten av elektrolyt (som innehåller korrosiva joner) till metallytan till den grad att den elektriska kretsen bryts. Eftersom korrosion inte kan ske utan en sluten elektrisk krets är detta ett mycket effektivt sätt att förhindra korrosion från att ske.Ett luftskikt på en superhydrofob yta nedsänkt i vatten är dock inte stabilt under lång tid. För att undersöka möjligheten till korrosionsskydd under längre tid med hjälp av hydrofoba beläggningar utvecklades en hydrofob ytbeläggning bestående av polydimetylsiloxan och hydrofoba nanopartiklar av kiseldioxid. Detta system visade en förbättring av korrosionsskyddet vid ökat partikelinnehåll upp till den koncentration (40 wt%) där i stället sprickbildning i ytbeläggningen observerades. Från detta system kunde slutsatsen dras att matrisens och partiklarnasvihydrofobicitet i kombination med den längre diffusionsvägen som partiklarna orsakade förbättrade korrosionsskyddet av den underliggande metallen.För att ytterligare förstå hur hydrofobicitet och partikeltillsatser påverkar en ytbeläggnings korrosionsskyddande egenskaper har dessutom ett treskikts kompositbeläggningssystem utvecklats. Genom att använda detta beläggningssystem, som består av en basbeläggning av polyesterakrylat, ett lager TiO2-partiklar (med en diameter på <100 nm) slutligen belagt med ett tunt ytskikt bestående av hexametyldisiloxan så kunde slutsatsen dras att både en hydrofob matris och partiklar behövs för att nå en markant förbättring av ytbeläggningens korrosionsskyddande egenskaper. / <p>QC 20151015</p>
|
7 |
Engineering Icephobic Coatings: Surface Characterization of Pt cured SiliconesShylaja Nair, Sithara 01 January 2017 (has links)
Ice buildup on structures leads to problems that include reduced performance, structural damage and power outages. It is therefore important to limit the energy required for removal of ice from substrates to minimize buildup. Understanding the mechanism of ice adhesion and its dependence on variables like coating thickness, stiffness, surface free energy and morphology is critical for minimizing adhesion. Despite several developments in “icephobic” coatings, which are those that have low ice adhesion, it is important to understand adhesion on the fundamental level to make way for advanced coatings. To do so, a study has been carried out that explores key variables affecting ice adhesion using a commercially available silicone, Sylgard 184®. Sylgard 184 is a two-part, platinum cured silicone elastomer available from Dow Corning with good physical and chemical stability and is used in widely diverse research studies.
The thermodynamic work of ice adhesion is related to the receding contact angle θ_r of water by Equation 1.
wa≈ γ_w (1+cos θ_r) Eq 1.
where γ_w is the surface tension of water. Considering an elastomeric substrate and ice as a rigid cylindrical adherent, the Kendall modelcan be adapted to relate peak removal force (Pc) with work of adhesion (wa), modulus (K), thickness (t), and radius (a) according to Equation 2.
Pc ∝ πa^2 ((2wa K)/t)^(1⁄2) Eq. 2
Considering these relationships, hydrophobic materials with low surface energies and high receding contact angles are generally predicted to show low adhesion. To begin to understand details, the force required to remove an ice cylinder from the silicone elastomer Sylgard 184 was investigated by focusing on three variables: coating thickness, modulus and cure temperature. “Cure” refers to the network formation or crosslinking within the material.
The Wynne research group has previously established a surprising dependence of qR on Sylgard 184 cure temperature.In this thesis, the relationship among variables noted above was examined by measuring Pc for Sylgard coatings. Additionally, effects of test temperature on ice adhesion strength was studied. Surface characterization methods including ATR-IR (attenuated total reflectance infrared spectroscopy), DCA (Wilhelmy plate dynamic contact angles) and AFM (atomic force microscopy) were employed. In summary, defined processing conditions were found optimum for minimizing ice adhesion to Sylgard coatings.
|
8 |
Studies of novel perfluoroalkyl derivatives of azobenzene in solution and on surfacesFletcher, James R. January 2011 (has links)
Azobenzene based photochromics have been studied widely since the development of the first azo dye, Mauvine, by Perkin in 1856. Azo based dyes have been widely used in industry for over a century. The desire to study them arose from their ease of synthesis and the wide availability of colours which can be tuned by manipulation of the chromophores on the azo molecule itself. The ability of azobenzene to photoisomerise between trans and cis states is widely known. The change in dipole moment affords the ability to fine-tune surfaces via photoisomerisation of the azo molecule. The objective of this investigation was to alter the surface properties of a variety of substrates via the photoisomerisation reaction of several perfluoroalkyl derived azobenzene compounds. These compounds are novel and are based on the idea of the fluoroalkyl chain creating a superhydrophobic surface, similar to Teflon, which would change surface energy upon isomerisation of the azobenzene molecule to give a more hydrophilic surface. This would ultimately then be utilised to coat a fabric surface to provide a photosensitive coating. The compounds used in this work (Admat 1 and 2 and Cfam derivatives) were synthesised in order for their photochemistry in solution and on surfaces to be investigated. The studies began with the photoisomerisation investigations in solution and the calculation of the rate constant and finally the activation energies of these compounds in a variety of common solvents. Interesting results were observed in polar protic solvents which were investigated further. The discovery that aggregation occurred in polar protic solvents due to solubility issues, which in turn led to a fast rate constant was a key finding of the solution work. The surface studies began with the investigation of cellulose as a substrate due to the structural similarity it has with cotton. The azo compounds were derivatised using cyanuric chloride to afford a triazinyl group which was able to attach to the surface of the cellulose via the hydroxyl groups on the surface.
|
9 |
Influence of nanoscale roughness on wetting behavior in liquid/liquid systemsTsao, Joanna W. 12 January 2015 (has links)
Wetting behavior of fluid/fluid/solid systems, largely influenced by surface properties and interactions between the three phases, plays a big role in nature and in industrial applications
Traditionally, wetting studies have focused on liquid/vapor systems, especially the study of a sessile liquid droplet in air. Liquid/vapor systems can only probe the effects of surface properties and interactions between the solid and the wetting liquid. This type of characterization is inadequate for liquid/liquid systems, where surface wettability is additionally influenced by interactions between the two wetting liquids.
The present study is the first to examine the effects of nanoscale roughness on wetting behavior in liquid/liquid systems and the modulation of roughness effects by fluid properties and the wetting order. This study examines both equilibrium and dynamic wetting behavior in liquid/liquid systems using well characterized substrates.
Rough substrates were fabricated by coating glass substrates with nanometer sized polymer particles. Partial dissolution of the particles and molecular de-deposition of the polymer allowed for tuning of substrate roughness while retaining the original surface chemistry. The effectiveness of this fabrication technique was verified using electron microscopy and electrokinetic analysis. We examined the wetting behavior in three fluid/fluid systems: an air/water system, a decane/water system, and an octanol/water system. The oils were chosen based on their different polarities.
Equilibrium wetting behavior was determined using contact angle measurements. Results indicate that for all systems where the primary wetting fluid was a liquid, an increase of the surface roughness resulted in Cassie-Baxter wetting. How hydrophilic a surface appears with regard to a water/fluid interface depended on the polarity of that fluid. The octanol/water system provided the strongest evidence regarding the effect of wetting order: a transition from Wenzel to Cassie-Baxter wetting was only observed when water was the primary wetting liquid. The observed transition was confirmed using a modified Wenzel/Cassie-Baxter model.
The kinetics of droplet spreading was measured using high speed optical microscopy. After a droplet was placed on a solid surface, the motion of the contact line was imaged at a rate of 1000 fps. The wetted area was then extracted using custom Matlab® scripts. The spreading kinetics underwent a transition between two regimes: a visco-inertial regime and a slower spreading regime. Results indicated that surface roughness influenced spreading kinetics in both regimes. The overall spreading rate was always slower for rough surfaces than for smoother surfaces. In liquid/liquid systems, the duration of visco-inertial regime was dependent on the surface roughness as well; in general, it was shorter for smooth substrates compared to rough substrates. Increasing the viscosity of the non-aqueous fluid significantly increased the duration of the visco-inertial regime and decreased the overall spreading rate.
This study provides insight into the competitive wetting of solid surfaces relevant in many industrial applications such as oil recovery or inkjet printing, and may guide the development of improved wetting models in an area that currently lacks an adequate theoretical description.
|
10 |
Numerical Simulation of Dynamic Contact Angles and Contact Lines in Multiphase Flows using Level Set MethodJanuary 2015 (has links)
abstract: Many physical phenomena and industrial applications involve multiphase fluid flows and hence it is of high importance to be able to simulate various aspects of these flows accurately. The Dynamic Contact Angles (DCA) and the contact lines at the wall boundaries are a couple of such important aspects. In the past few decades, many mathematical models were developed for predicting the contact angles of the inter-face with the wall boundary under various flow conditions. These models are used to incorporate the physics of DCA and contact line motion in numerical simulations using various interface capturing/tracking techniques. In the current thesis, a simple approach to incorporate the static and dynamic contact angle boundary conditions using the level set method is developed and implemented in multiphase CFD codes, LIT (Level set Interface Tracking) (Herrmann (2008)) and NGA (flow solver) (Desjardins et al (2008)). Various DCA models and associated boundary conditions are reviewed. In addition, numerical aspects such as the occurrence of a stress singularity at the contact lines and grid convergence of macroscopic interface shape are dealt with in the context of the level set approach. / Dissertation/Thesis / Masters Thesis Mechanical Engineering 2015
|
Page generated in 0.0335 seconds