• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Electronic structure, defect formation and passivation of 2D materials

Lu, Haichang January 2019 (has links)
The emerging 2D materials are potential solutions to the scaling of electronic devices to smaller sizes with lower energy cost and faster computing speed. Unlike traditional semiconductors e.g. Si, Ge, 2D materials do not have surface dangling bonds and the short-channel effect. A wide variety of band structure is available for different functions. The aim of the thesis is to calculate the electronic structures of several important 2D materials and study their application in particular devices, using density functional theory (DFT) which provides robust results. The Schottky barrier height (SBH) is calculated for hexagonal nitrides. The SBH has a linear relationship with metal work function but the slope does not always equal because Fermi level pinning (FLP) arises. The chemical trend of FLP is investigated. Then we show that the pinning factor of Si can be tuned by inserting an oxide interlayer, which is important in the application to dopant-free Si solar cells. Apart from contact resistance, we want to improve the conductivity of the electrode. This can be done by using a physisorbed contact layer like FeCl3, AuCl3, and SbF5 etc. to dope the graphene without making the graphene pucker so these dopants do not degrade the graphene's carrier mobility. Then we consider the defect formation of 2D HfS2 and SnS2 which are candidates in the n-type part of a tunnel FET. We found that these two materials have high mobility but there are also intrinsic defects including the S vacancy, S interstitial, and Hf/Sn interstitial. Finally, we study how to make defect states chemically inactive, namely passivation. The S vacancy is the most important defect in mechanically exfoliated 2D MoS2. We found that in the most successful superacid bis(trifluoromethane) sulfonamide (TFSI) treatment, H is the passivation agent. A symmetric adsorption geometry of 3H in the -1 charge state can remove all gap states and return the Fermi level to the midgap.
2

Micromechanics of Fiber Networks

Borodulina, Svetlana January 2016 (has links)
The current trends in papermaking involve, but are not limited to, maintaining the dry strength of paper material at a reduced cost. Since any small changes in the process affect several factors at once, it is difficult to relate the exact impact of these changes promptly. Hence, the detailed models of the network level of a dry sheet have to be studied extensively in order to attain the infinitesimal changes in the final product. In Paper A, we have investigated a relation between micromechanical processes and the stress–strain curve of a dry fiber network during tensile loading. The impact of “non-traditional” bonding parameters, such as compliance of bonding regions, work of separation and the actual number of effective bonds, is discussed. In Paper B, we studied the impact of the chemical composition of the fiber cell wall, as well as its geometrical properties, on the fiber mechanical properties using the three-dimensional model of a fiber with helical orientation of microfibrils at a range of different microfibril angles (MFA). In order to accurately characterize the fiber and bond properties inside the network, via statistical distributions, microtomography studies on the handsheets have been carried out. This work is divided into two parts: Paper C, which describes the methods of data acquisition and Paper D, where we discuss the extracted data. Here, all measurements were performed at a fiber level, providing data on the fiber width distribution, width-to-height ratio of isotropically oriented fibers and contact density. In the last paper, we utilize data thus obtained in conjunction with fiber morphology data from Papers C and D to update the network generation algorithm in order to produce more realistic fiber networks. We also successfully verified the models with the help of experimental results from dry sheets tested under uniaxial tensile tests. We carry out numerical simulations on these networks to ascertain the influence of fiber and bond parameters on the network strength properties. / <p>QC 20160613</p>

Page generated in 0.0447 seconds