• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Towards A Better Understanding of Contaminant Fate in Plastic Plumbing Systems and Their Remediation

Xiangning Huang (5929781) 17 January 2019 (has links)
<p><a>This dissertation focused on better understanding the fundamental processes that control organic and inorganic contaminant interaction with plastic plumbing pipes. Plastic pipes are increasingly being installed for drinking water plumbing, but their role in affecting drinking water quality has received little study. It is well-known that plastic pipes can sorb and release organic contaminants and be difficult to decontaminate. Several problems were identified in the literature and through discussions with industry: (1) Past guidance issued to communities affected by petroleum contaminated water does not seem to specifically consider plastic plumbing pipe remediation, (2) investigators have also identified heavy metals can accumulate on pipe inner walls, (3) Others have proposed certain heavy metals can catalyze plastic water pipe degradation, (4) No nondestructive cleaning methods were found for removing metal scales from plastic pipes.</a> These topics were a basis for studies conducted because lack of information inhibits greater protection of public health, safety, and welfare.</p> This dissertation involved the application of knowledge and techniques from the environmental engineering and science, polymer engineering, and material science disciplines. Chapter 1 focused on the response of copper and plastic pipes (i.e., chlorinated polyvinylchloride (cPVC), high-density polyethylene (HDPE), crosslinked polyethylene (PEX)) exposed to petroleum contaminated drinking water. Bench-scale results revealed that pipe rinsing followed by a single 3 day water stagnation period removed target monoaromatic hydrocarbons (MAH) from copper pipes, but much longer (<u>></u>15 days) time was required for decontaminating cPVC, HDPC, and PEX pipes. Benzene, trimethylbenzene and polynuclear aromatic hydrocarbons, some of which are not typically considered in drinking water contamination investigations, were found desorbed into clean drinking water from pipes. Future plumbing decontamination guidance should consider the conditions necessary for plastic pipe remediation. Chapter 2 describes the influence of drinking water conditions on heavy metal contaminant – low density polyethylene (LDPE) pellet surface interactions. Mixed metal drinking water solutions were applied and contained Cu, Fe, Mn, Pb and Zn at 30 µg/L. LDPE was selected as the model polymer because of its prior use for piping in Europe, use in bench-scale studies by others, and similarity to products used for the manufacture of more complex materials in the USA (HDPE, PEX). As expected, metal loadings were about 5 times greater for aged LDPE pellets suspended in solution compared to new LDPE pellets. This difference was attributed to the aged plastic surfaces having oxygen containing functional groups, increased surface area, and enhanced hydrophilicity. Metal loading was lower at pH >9.5 and in the presence of dissolved organic contaminants. The presence of free chlorine and corrosion inhibitor also decreased metal adsorption onto LDPE pellets. These factors likely enabled metal precipitation thereby not allowing metal species to adsorb to LDPE pellets suspended in water. XPS results showed deposited metals (i.e., Cu, Pb, Zn) primarily consisted of hydroxides and oxides. To further understand heavy metal – plastic pipe interactions, Chapter 3 involved the use of metal and plastic pipe rigs and exhumed PEX plumbing pipes. Exhumed cold and hot water PEX pipes contained a noticeable amount of heavy metals (i.e., most abundant metals were 2049 mg/m<sup>2</sup> Fe, 400 mg/m<sup>2</sup> Ca, 438 mg/m<sup>2</sup> Zn and 150 mg/m<sup>2</sup> P). Metal release and deposition onto PEX pipe was examined using bench-scale pipe rigs that contained new PEX pipe, brass valves, and copper pipe. Two water matrices (pH 4 and 7.5) and two temperatures (23<sup>o</sup>C and 55<sup>o</sup>C) were explored. The pH 4 water often accelerated metal leaching from brass valves, and a greater amount of heavy metals deposited on PEX pipes at high water pH and temperature (pH 4 and 55<sup>o</sup>C) conditions. Oxygen containing functional groups were detected on PEX pipes connected to a brass valve or a brass valve combined copper pipe, but were not found on PEX pipe only (controls) samples, indicating that certain configurations may facilitate plastic pipe degradation. The last chapter describes the ability of a new lignin derived ligand to remove metal deposits from exhumed PEX plumbing pipes. When the ligand concentration was ≥ 5mM, more than 95% of sorbed metals (i.e., Cu, Fe, Mn, Pb and Zn) were removed. The ligand favored certain metals over others (Cu > Zn > Fe > Mn > Pb) and heavy metal removal mechanisms were proposed. This dissertation provides insights into the role of plastic pipes on drinking water quality. As plastic pipes continue to be installed, it is in the interest of public health, welfare, and safety to understand their role in positively and negatively affecting drinking water safety.
2

Accumulation and colloidal mobilization of trace heavy metals in soil irrigated with treated wastewater / Immobilisation et transport colloidal des métaux lourds en concentrations traces dans les sols irrigués par des effluents urbains traités

Pontoni, Ludovico 15 December 2016 (has links)
La réutilisation des eaux usées traitées pour l’irrigation est globalement acceptée et pratiquée pour faire face à la pénurie d'eau et économiser les ressources de haute qualité. Bien que cette pratique présente des avantages indéniables et contribue à un usage plus durable de l'eau douce, elle n’est pas exempt de problèmes liés à l'impact potentiel sur la qualité des sols récepteurs et sur les cultures de micropolluants contenus dans l'eau réutilisée. Parmi ces polluants, les métaux lourds (ML) en concentrations traces jouent un rôle primordial en raison de leur présence systématique dans l'eau utilisée et de leur persistance une fois libéré dans l'environnement. Le devenir des ML dans les sols peut difficilement être prédit parce que les mécanismes de mobilité à travers les sols sont extrêmement variés et liés à des phénomènes simultanés et très complexes impliquant différents équilibres chimiques. Les ML, comme beaucoup d'autres contaminants, ne sont pas seulement partagé entre la phase immobile (le sol) et les phases mobiles présentes dans l'eau. En effet, les colloïdes et les nanoparticules agissent comme une troisième phase mobile, avec leurs propres propriétés rhéologiques et des vitesses de migrations qui leur sont propres. Ce dernier aspect a été l'un des principaux objectifs d’étude de la thèse. Plusieurs essais expérimentaux ont été menés en irriguant un sol standard selon l'Organisation de coopération et de développement économiques (OCDE) avec une eau usés traités réel et / ou synthétiques, contenant des ML en concentrations traces. Pour chaque test, un sol spécifique (avec différentes teneurs en matière organique) et des eaux usées traitées de composition différente (avec différentes concentrations en métaux traces, de salinité, de la teneur en matière organique pour les eaux usées synthétiques, ou des eaux usées traitées réelles) ont été choisi afin d'évaluer les effets des conditions différentes sur le devenir global des ML. L'augmentation de la matière organique du sol de 2,5 à 10% a linéairement amélioré la mobilité des Cd, Cu et Ni avec une augmentation de la mobilité maximum de 35,6, 43,7 et 49,19% pour le Cd, Cu et Ni, respectivement. Pour la plupart des expériences, les ML ont été capturés dans la couche superficielle du sol (0,5 à 1 cm). Néanmoins, des pics de contamination ont été détectés à des profondeurs différentes dans les couches plus profondes du sol. L’étude de la composition des lixiviats montre des variations de concentrations fonction du métal étudié et des caractéristiques du sol et des eaux usées. Des pics de métaux dans le lixiviat sont apparus en même temps que la libération de la matière et / ou la libération de silicates organiques, ce qui démontre l'implication significative des colloïdes dans le transport des métaux. La concentration en sodium (20 mM) a été démontrée un impact fort sur la réduction de la mobilisation colloïdale et que plus de 95% du métal apporté a été détecté dans la couche superficielle du sol en dépit de sa teneur en matière organique. La salinité affiche donc des effets significatifs. L'irrigation avec des eaux usées traitées présentant une très haute teneur en Ca et Mg (111 et 134 mg / L, respectivement) a abouti à la libération moyenne plus élevée de silicium à partir de la matrice inorganique du sol (8,2 mg / L) par rapport à la faible salinité des eaux usées artificielle (1,9 mg / L). Par conséquent, la mobilisation ultérieure de Cd, Cu, Ni et Zn a été observée lorsque le sol a été irrigué avec des eaux usées traitées réelles. Une caractérisation spectroscopique avancée des lixiviats a été réalisée pour identifier les agrégats colloïdaux libérés par le sol dans le but d’en déterminer leur nature, leurs propriétés chimiques et leur état d'agrégation / Reuse of treated wastewater for agricultural purposes is worldwide accepted and practiced to face water scarcity and save high quality resources. Although such practice has undoubtable advantages and is certainly more sustainable respect to the use of fresh water, it is not exempt from severe concerns related to the potential impact on the receiving soil and on the crops of potentially harmful pollutants contained in the reused water at trace levels. Among these pollutants, trace heavy metals (HMs) play a primary role due to their spread presence in the used water and to their persistence once released in the environment. The fate of HMs in the soils can be hardly predicted as mechanisms of mobility through soils are extremely diverse and related to highly complex simultaneous phenomena and chemical equilibria. HMs, in fact, as many other contaminants, are not only partitioned between the solid immobile and the water mobile phases. Indeed, colloids and nanoparticles act as a third mobile phase, with their own rheological properties and velocity. This latter aspect has been one of the main focus of the thesis. In details the thesis describes the results of several experiments conducted irrigating the OECD standard soil with real and/or synthetic wastewater, containing HMs in trace. For each test a specific soil (e.g. varying the organic matter content) and wastewater composition (e.g. varying the metals concentration, the salinity, the organic matter content, or testing real treated wastewaters) has been chosen in order to evaluate the effects of different conditions on the overall HMs fate. The increase of soil organic matter from 2,5 to 10% linearly enhanced the mobility of Cd, Cu and Ni up to a maximum mobility increase of 35.6, 43.7 and 49.19 % for Cd, Cu and Ni, respectively. In most experiments metals accumulated in the top soil layer (0.5 - 1 cm). Nevertheless peaks of contamination were detected at different depths in the soil deeper layers and at different leaching time in the leachates depending on the metal and on the soil and wastewater characteristics. Peaks of metals in the leachate appeared simultaneously with release of organic matter and/or release of silicates, demonstrating outstanding involvement of colloids in metals transport. Sodium concentration (20mM) decidedly reduced colloidal mobilization whereas more than 95 % of the influent metal was detected in the top layer despite the soil organic matter content. Salinity displayed different effects. The irrigation with real treated wastewater with quite high content of Ca and Mg (111 and 134 mg/L, respectively) resulted in higher average release of silicon from the soil inorganic matrix (8.2 mg/L) compared to the low salinity artificial wastewater (1.9 mg/L). Consequently higher mobilization of Cd, Cu, Ni and Zn was observed when the soil was irrigated with real treated wastewater. An advanced spectroscopical characterization of the leachates was performed to identify such colloidal aggregates. The observation of 3D excitation-emission matrix demonstrated in all the leachates samples the presence of fulvic (230-450 nm ex-em fluorescence area) and humic (330-445 nm ex-em) substances. In this context, a novel analytical method was developed to quantify phenolic substances in soil matrices allowing the monitoring of humic matter migration in soil profiles. The novel method was more accurate and more precise respect to the traditional one, allowing to obtain higher recovery of total phenols in peat soil (15.5 % increase) with a decrease of the coefficient of variation (30.1% decrease). Organic water soluble colloids were extracted from the peat used to prepare the OECD standard soil and characterized. Results of size exclusion chromatography highlighted the supramolecular structure of the extracted organic matter. Such structure was further confirmed through fluorescence and 1H-NMR spectroscopy

Page generated in 0.07 seconds