• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Avaliando o Forecast Content dos Modelos Auto-regressivos Para arrecadaÃÃo de ICMS do Setor ElÃtrico do Estado do Cearà / Evaluating the Forecast Content of autoregressive models for collection of ICMS Power Sector in CearÃ

Francisco Ozanan Bezerra de Moraes 25 February 2011 (has links)
nÃo hà / Neste ensaio investiga-se a perda de conteÃdo dos modelos de previsÃo autoregressivos, na medida em que se alarga o horizonte temporal no qual a variÃvel à estimada. O conteÃdo à medido pela reduÃÃo relativa do erro quadrado mÃdio que o modelo proporciona em comparaÃÃo ao processo simplificado de utilizar a mÃdia incondicional da sÃrie temporal. A variÃvel estudada à a arrecadaÃÃo mensal do Imposto sobre CirculaÃÃo de Mercadorias e ServiÃos (ICMS) proveniente do segmento de energia elÃtrica, no Estado do CearÃ, no perÃodo de janeiro de 1999 a setembro de 2010. Utiliza-se o mÃtodo e o modelo computacional formulados por Galbraith (2003), analisando-se a forecast content function, na qual o conteÃdo depende do nÃmero de perÃodos estimados. Os resultados confirmam que, para a sÃrie temporal explorada, quando se eleva o alcance da previsÃo o conteÃdo decai rapidamente, podendo atingir valor inferior a 10% quando o horizonte da previsÃo chega a 5 meses. Verificou-se, ademais, que o uso de sub-amostras via descarte de perÃodos mais antigos agrava a perda de conteÃdo. / In this essay we investigate the loss of content in autoregressive forecast models, as it is increased the horizon of time in which the variable is estimated. The content is measured as the proportionate reduction in medium squared error (MSE) that the model gives, comparing to the simple process by using the unconditional mean of time series. The variable is the monthly collection of ICMS from electric power sector, in Cearà state, in the period from January 1999 to September 2010. We use the method and computational model formulated by Galbraith (2003), analyzing the forecast content function, in which the content depends on the number of estimated periods. The results confirm that, when it increases the range of forecast the content decays quickly, reaching less than 10% when the forecast horizons reaches 5 months. It was found further that the use of subsamples by discarding oldest periods increases the loss of content.

Page generated in 0.0594 seconds