• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 26
  • 26
  • 9
  • 8
  • 8
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Generation and preservation of continental crust in collisional orogenic systems

Spencer, Christopher J. January 2013 (has links)
The continental crust is the archive of Earth history. Much of what we know about the development of Earth is learned from the continental crust, and it is within the crust that many natural resources are found. Hence, understanding its formation and evolution is a key aspect to a deeper knowledge of the Earth system. This thesis is a study of the processes that have formed and shaped the distribution of continental crust, with specific focus on crustal development associated with the Rodinian supercontinent and the Grenville Orogeny spanning ca. 1200 to 900 Ma. Specifically it addresses an aspect of the incompleteness of the record of continental crust formation. The preserved continental crust is punctuated with periods of lesser and greater frequency of geologic features, e.g., the temporal distribution of the ages of mineral deposits, juvenile granitoids, eclogites, granulites, and the U-Pb crystallization ages of zircons now preserved in modern and ancient sediments (see Gastil, 1960; Barley and Groves, 1992; Condie, 1998; Campbell and Allen, 2008; Brown, 2007; Bradley, 2011). In addition, interpretive features in the geologic record also have an apparent episodic distribution such as passive margins (Bradley, 2011) and supercontinents (Condie, 1998). The episodic nature of these geologic phenomena implies either an episodic formation or preferential preservation of continental crust. These two end member models have been explained through a number of geologic processes such as eruption of superplumes, global disruption of thermal structure of the mantle, assembly of supercontinents, collisional orogenesis. Through the chapters outlined below, this thesis explores the connection of these episodic geologic events with key isotopic signals, principally U-Pb, Hf, and O isotopes in zircon supplemented by sedimentology, structural geology, and igneous geochemistry. It comprises a series of chapters developed around manuscripts prepared for publication.
2

A study of the lower crust using wide-angle multi-channel seismic data

Hague, Philip John January 1996 (has links)
No description available.
3

Seismic evidence and tectonic significance of an intracrustal reflector beneath the inner California continental borderland and peninsular ranges

Chang, Jefferson Castillo, January 2008 (has links)
Thesis (M.S.)--University of Texas at El Paso, 2008. / Title from title screen. Vita. CD-ROM. Includes bibliographical references. Also available online.
4

Crustal structure and formation of the southeast Newfoundland continental margin /

Solvason, Krista L. M., January 2006 (has links)
Thesis (Ph.D.)--Memorial University of Newfoundland, 2006. / Bibliography: leaves 309-318. Also available online.
5

Silicon isotopes and the development of the Earth

Savage, Paul S. January 2011 (has links)
Silicon (Si) isotopes have been extensively studied in low temperature environments but the science of Si isotopes in igneous material has been comparatively ignored. This is because the degree of isotopic fractionation at high temperatures is relatively small, making the accurate measurement of these variations extremely challenging. Using state-of-the-art analytical techniques and instrumentation, which deliver high levels of precision, the objective of this research is to rectify this omission. Specifically, this study aims to investigate whether there are systematic Si isotope variations within, and provide robust Si isotopic compositions for, the major silicate reservoirs on Earth. To this end, a broad range of mantle and crustal lithologies, sourced globally and from various tectonic regimes, have been analysed using high resolution MC-ICP-MS. Analyses indicate that the Si isotopic compositions of mantle-derived mafic and ultramafic material are extremely homogeneous. These data are used to calculate a Bulk Silicate Earth (BSE) average of δ<sup>30</sup>Si = -0.29 ± 0.08 ‰ (2 s.d.). The degree of Si isotopic fractionation as a result of magmatic differentiation has also been assessed, and found to be small but resolvable between basalt and rhyolitic end-members. Finally, this research shows that, although igneous rocks and sediments derived from the continental crust can be relatively heterogeneous with respect to Si isotopes, bulk averages calculated for the upper, middle and lower continental crust are all very similar to that of BSE. Providing robust estimates for these reservoirs has greatly improved our knowledge of the behaviour of Si isotopes in silicate lithologies and provides a framework for further Si isotopic investigations of such material.
6

Mantle-crust Interaction in Granite Petrogenesis in Post-collisional Settings: Insights from the Danubian Variscan Plutons of the Romanian Southern Carpathians

Stremtan, Ciprian Cosmin 19 November 2014 (has links)
The issue of granite petrogenesis plays a key role in our overall understanding of the growth and differentiation of continents, as well as in our ability to unravel the tectonic histories of orogenic belts. Granites are ubiquitous magmatic products found in almost all tectonic settings: oceanic and continental rifts (i.e., plagiogranites - extreme basalt differentiates), active continental margins (e.g,. the granitic batholiths of central and southern Andes), continent-continent collision zones (e.g., the orogenic batholiths of the Himalayas, Western Anatolia), post-collisional settings (e.g., the Variscan provinces of Europe), complex within-plates settings (e.g., Limmo massif, Afar, Ethiopia). Furthermore, granitoids are characterized by considerable petrological and geochemical heterogeneity, as they can form from a vast array of sources: sediments (e.g., pelites, arkoses, psammites), metamorphic rocks (e.g., (mica)schists, gneisses, etc.), and igneous rocks (e.g. andesites, dacites, tonalites, etc.). Aside from fertile sources (i.e., protoliths), granite petrogenesis is dependent upon two critical parameters: temperature (to promote melting of the protoliths) and water availability - either as freely available aqueous solutions/vapors (e.g., water input in subduction zones); or water released via dehydration melting of hydrous minerals (e.g., micas, amphiboles). The presence of water in protoliths depresses the melting temperature of mineral components and provides the environment for redistribution of chemical components. Understanding the origins of granitic rocks presents unique challenges, given that in many of the tectonic settings where granites are encountered, it is clear that their modes of formation can involve a spectrum of igneous and metamorphic processes that are not readily accessible for examination, either through the study of modern environments or via analogy to "classical" localities. The petrogenesis and emplacement of granites in post-collisional tectonic settings is one of the thornier challenges, as these rocks appear to be derived via thermal and magmatic processes within highly deformed and compositionally diverse continental crust for which we lack a clear understanding. A number of unconventional and difficult-to-test mechanisms have been posited to drive crustal heating, melting, and subsequent pluton post-collisional emplacement. Although large volumes of granitic magmas have been emplaced in post-collisional settings, the complexities of the processes active in such settings make it challenging to put forward testable models that effectively combine available geochemical, petrologic, and geophysical data. Models for granite genesis away from plate margins (by means of crustal thickening, thermal blanketing, and internal heating from radioactive decay of 40K, 230Th, 235U, and 238U; delamination of the crustal lithosphere and juxtaposition of hot mantle melts at the base of the crust; underplating of mantle melts; or slab brake-off and upwelling of mantle melts) have been successfully applied in comparatively young orogenic regions, such as the Himalayas, the Carpathians, and Turkey. These models have proven challenging to employ in older orogenic belts, given their sometimes intricate tectonic and metamorphic histories, and the loss of pertinent evidence due to the effects of post-emplacement tectonic reworking, and often extensive alteration and erosion. A series of ancient but fresh, age-correlative granitic plutons are exposed in Alpine nappes on the flanks of the Carpathians Mountains in southwestern Romania. These granites, all mapped as intruding the Neoproterozoic basement of the Danubian tectonic terrane, were emplaced during the post-collisional stages of two world-scale orogenies: an older, Pan-African event (~600 Ma) and a younger, Variscan event (~330- 280 Ma). My dissertation is focused on the study of late Variscan post-collisional plutons and associated sub-volcanic dykes, as they are tremendous tools for understanding and quantifying the mantle-crust interaction in post-collisional environments and the overall evolution of the continental crust during the Variscan orogeny. Originally believed to be Proterozoic in age, zircon U/Pb dating showed that the plutons are much younger (Chapter 1 - Post-collisional Late Variscan magmatism in the Danubian domain (South Carpathians, Romania) documented by zircon U/Pb LA-ICP-MS) and correspond to the latest stages of the Variscan orogeny, as recorded elsewhere in the European Variscan provinces. The granitic plutons are relatively small and are generally concordant with the structures preserved by the country rocks. The extraordinary petrological and geochemical heterogeneities, even at pluton scale (Chapter 2 - Petrology and geochemistry of the Late Variscan post-collisional Furătura granitic pluton South. Carpathian Mts. (Romania)) argue against unique protoliths and simple evolutionary processes (e.g., closed-system fractional crystallization; anatexis). Trace elemental data for the Furătura pluton shows that the melts were formed in equilibrium with a garnet-amphibole restite, under pressure-temperature conditions deeper than the plagioclase stability field, implying that the melting took place at depths in excess of 40 km in the continental crust. Stable and radiogenic isotope data suggest that a protolith was of (possibly enriched) mantle affinities, and that the melts were subsequently contaminated in various degrees by deep crustal lithologies. In comparison, other post-collisional Variscan plutons from the Danubian domain (Chapter 4 - The role of the continental crust and lithospheric mantle in Variscan post-collisional magmatism - insights from Muntele Mic, Ogradena, Cherbelezu, Sfârdinu, and Culmea Cernei plutons (Romanian Southern Carpathians)) have trace elemental compositions that suggest they were formed at different levels in the crust, under P-T conditions corresponding to both garnet-amphibole and plagioclase stability fields. Some of the plutons lack mantle geochemical signatures and their isotopic compositions are indicative of substantial involvement of both lower- and upper-crustal rocks in their formation and subsequent evolution. On the other hand, plutons emplaced during the same time interval and most likely in close geographical proximity have trace elemental and isotopic compositions indicating strong input from previously enriched mantle components which experienced various degrees of assimilation fractionation-crystallization and/or assimilation of continental crust material during their evolution. This variability in both protoliths and processes responsible for the formation of the granites, coupled with the presence of mantle signatures in late-orogenic post-collisional melts are strong evidence to support delamination as means of providing both the mantle-derived input and energy required for generation of granitoids in the crust. The pronounced variation in petrological and chemical compositions of synchronous plutons suggests that delamination in the Danubian domain was not a single, large scale event that affected the entire crust, but rather a collection of disparate, spatially and chronologically limited event, that affected the Variscan crust during the latest stages of the orogeny. This hypothesis is further tested on a series of sub-volcanic dykes (the Motru Dyke Swarm) crosscutting the entire Danubian basement (Chapter 3 - Post-collisional magmatism associated with Variscan orogeny in the Danubian Domain (Romanian Southern Carpathians): the Motru Dyke Swarm). Initially, the emplacement age of these dykes was assumed as "pre-Silurian" but our mapping has showed that they intrude components of the Danubian domain that shared a documented common history not earlier than the Carboniferous. Furthermore, the dykes are in intrusive relationship with two of the Danubian Variscan plutons, thus arguing for an early Permian emplacement age. Geochemical data show extraordinary heterogeneities in the dykes' composition and record both mantle and crust involvement in their formation. The dykes were emplaced at much shallower depths in the crust, as compared with the granitic plutons. Still, their isotopic compositions clearly indicate that they sampled both lower- and upper-crustal compositions during their evolution. This means that after the crustal thickening episodes that define continent-continent collisions, during the latest stages of the Variscan orogeny, the crust became progressively thinner, as a way to compensate for its metastable state. Thinning of the crust is greatly favored by delamination of the lithosphere. A delamination event, which usually postdates the cessation of continental collision or prolonged crustal shortening, involves the geologically rapid foundering of negatively buoyant lithosphere comprised of mantle and (potentially) lower crust into underlying hotter and less dense asthenosphere. Such a process will remove the lithospheric mantle (and potentially segments of the lower crust) along pre-existing lineaments or mechanical flaws, and juxtapose hot upwelling asthenosphere against the base of the crust, leading to partial melting. Field, petrological, and geochemical data presented in my dissertation document pronounced variations in the overall composition of synchronous plutons and dykes, and further suggest that delamination in the Danubian domain was an active process. This bears great importance in our understanding of the evolution of the crust and argues that mantle-crust interactions are responsible for the generation of continental crust even in the latest stages of an orogen.
7

Investigations into Crustal Composition and Oxidative Weathering in the Archean

January 2020 (has links)
abstract: Archean oxidative weathering reactions were likely important O2 sinks that delayed the oxygenation of Earth’s atmosphere, as well as sources of bio-essential trace metals such as Mo to the biosphere. However, the rates of these reactions are difficult to quantify experimentally at relevantly low concentrations of O2. With newly developed O2 sensors, weathering experiments were conducted to measure the rate of sulfide oxidation at Archean levels of O2, a level three orders of magnitude lower than previous experiments. The rate laws produced, combined with weathering models, indicate that crustal sulfide oxidation by O2 was possible even in a low O2 Archean atmosphere. Given the experimental results, it is expected that crustal delivery of bio-essential trace metals (such as Mo) from sulfide weathering was active even prior to the oxygenation of Earth’s atmosphere. Mo is a key metal for biological N2 fixation and its ancient use is evidenced by N isotopes in ancient sedimentary rocks. However, it is typically thought that Mo was too low to be effectively bioavailable early in Earth’s history, given the low abundances of Mo found in ancient sediments. To reconcile these observations, a computational model was built that leverages isotopic constraints to calculate the range of seawater concentrations possible in ancient oceans. Under several scenarios, bioavailable concentrations of seawater Mo were attainable and compatible with the geologic record. These results imply that Mo may not have been limiting for early metabolisms. Titanium (Ti) isotopes were recently proposed to trace the evolution of the ancient continental crust, and have the potential to trace the distribution of other trace metals during magmatic differentiation. However, significant work remains to understand fully Ti isotope fractionation during crust formation. To calibrate this proxy, I carried out the first direct measurement of mineral-melt fractionation factors for Ti isotopes in Kilauea Iki lava lake and built a multi-variate fractionation law for Ti isotopes during magmatic differentiation. This study allows more accurate forward-modeling of isotope fractionation during crust differentiation, which can now be paired with weathering models and ocean mass balance to further reconstruct the composition of Earth’s early continental crust, atmosphere, and oceans. / Dissertation/Thesis / Doctoral Dissertation Geological Sciences 2020
8

Evolution of Plinian magmas from Popocatépetl Volcano, México

Sosa Ceballos, Giovanni 1975- 24 October 2014 (has links)
Fractional crystallization, magma mixing, assimilation of continental crust, and how those processes modify volatile budgets, control the evolution of magma. As a consequence, the understanding of these processes, their magnitudes, and timescales is critical for interpreting ancient magma systems, their eruptions, and the potential future volcanic activity. In this dissertation I present the results of three projects. The first explores how magmatic processes affect magma reservoirs and eruption dynamics. The second explores where in the storage system and how often these processes occur. The third explores how volatile budgets are modified by processes such as crystallization, mixing, and assimilation. Volcán Popocatépetl (central México) erupted ~14100 14C yr BP producing the Tutti Frutti Plinian Eruption (TFPE). The eruption tapped two different silicic magmas that mixed just prior and during the eruption. The influx of mass and volatiles generated during the mixing of both magmas overpressured the reservoir, which was weakened at the top. The weakened reservoir relaxed while magma was tapped and collapsed to form a caldera at the surface. Although it is known that fractional crystallization, mixing, and assimilation can greatly modify magmas, the frequency and intensity of these events is not known. I investigated the magmatic processes responsible for the evolution of magmas erupted during five Plinian events of Popocatépetl volcano. Results show that during the last 23 ky magma was stored in two different zones, and was variably modified by replenishments of mafic magma. Interestingly, little evidence for large mafic inputs triggering explosive eruptions was found. Each of these processes alters the abundances of volatiles and introduces different types of volatiles to the system. Hence, the volatile budget of magma can have a rich and complex history. To investigate how volatile budgets evolve in active magma systems, I analyzed the abundances of volatiles (H2O, CO2, F, Cl, and S) in numerous glass inclusions trapped in phenocrysts. Results show that the magmas that produced the last five Plinian eruptions at Popocatépetl volcano evolved by crystallization and magma mixing, assimilation of the local carbonate basement is not chemically appreciable. Mixing with mafic magmas added substantial CO2 and S to the system, dewatered the magma, yet produced little change in the F contents of the magmas. / text
9

The role of amphibole in the evolution of arc magmas and crust: the case from the Jurassic Bonanza arc section, Vancouver Island, Canada

Larocque, Jeffrey Paul 22 December 2008 (has links)
Exposed on Vancouver Island, British Columbia, the Jurassic Bonanza arc is believed to represent the southerly continuation of the Talkeetna arc. Small bodies of mafic and ultramafic cumulates within deeper plutonic levels of the arc constrain the fractionation pathways leading from high-MgO basalt to andesite-dacite compositions. The removal of amphibole from the most primitive non-cumulate compositions controls the compositions of mafic plutons and volcanics until the onset of plagioclase crystallization. This removal is accomplished by the intercumulus crystallization of large amphibole oikocrysts in primitive olivine hornblendite cumulates. Experimental hornblende compositions that crystallize from high-MgO basalts similar to primitive basalts from the Bonanza arc show a good correlation between octahedral Al in hornblende and pressure, and provide a means of estimating crystallization pressures during differentiation of primitive arc basalt. Application of an empirical barometer derived from experimental amphibole data (P = Al(6)/0.056 – 0.143; r2 = 0.923) to natural hornblendes from this study suggests that crystallization of primitive basalts took place at 470-880 MPa. Two-pyroxene thermometry gives a result of 1058 +/- 91 ºC for the only olivine hornblendite sample with both pyroxenes. Lever rule calculations require the removal of 30-45 % hornblende from the most primitive basalt compositions to generate basaltic andesite, and a further 48% crystallization of hornblende gabbro to generate dacitic compositions. Hornblende removal is more efficient at generating intermediate compositions than anhydrous gabbroic fractionating assemblages, which require up to 70% crystallization to reach basaltic andesite from similar starting compositions. There are no magmatic analogues to bulk continental crust in the Bonanza arc; no amount of delamination of ultramafic cumulates will push the bulk arc composition to high-Mg# andesite. Garnet removal appears to be a key factor in producing bulk continental crust.
10

Dynamic links between short-term deformation and long-term tectonics a finite element study /

Luo, Gang, Liu, Mian. January 2009 (has links)
Title from PDF of title page (University of Missouri--Columbia, viewed on Feb 26, 2010). The entire thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file; a non-technical public abstract appears in the public.pdf file. Dissertation advisor: Dr. Mian Liu. Vita. Includes bibliographical references.

Page generated in 0.085 seconds