Spelling suggestions: "subject:"continental shell -- diestern australia"" "subject:"continental shell -- diestern 4ustralia""
1 |
Physical processes along the southern continental shelf and slope of Western AustraliaMohd Akhir, Mohd Fadzil January 2010 (has links)
The circulation along the south coast of Western Australia was examined using field data and numerical modelling. Physical processes in this region, particularly along the continental shelf and slope regions, were poorly understood due to a paucity of field measurements. Data were collected during a research cruise on RV Southern Surveyor (04/2006) during April 2006 consisting of 18 CTD transects from Twilight Cove (126oE) to Cape Leeuwin (115oE) and was augmented by shipborne ADCP data. The field data set provided a detailed understanding of three major current systems: Leeuwin Current (LC), Leeuwin Undercurrent (LU) and Flinders Current (FC). The LC along the south coast exhibits different characteristics when compared to that along the west coast. The LC flows into the colder and lower salinity subantarctic environment of the south coast. This is evident in a strong geopotential gradient off the south-west corner of Australia (Cape Leeuwin) resulting in rapid acceleration of the LC as it reaches a maximum velocity in this region. Numerical modelling studies, using the Regional Ocean Modelling System (ROMS) indicated that wind stress is an important component of the dynamics in this region. This was identified when comparing summer and winter conditions when the winds act in opposite directions, from north-westerly to southeasterly respectively. Along the shelf break and slope, the Flinders Current (FC) interacts with LC. As the dominant current, the FC serves both as a surface and as an undercurrent, transporting sub Antarctic mode water (SAMW). This interconnection the FC and LU can be seen clearly from the salinity, temperature and velocities within the depth range 200-700m postulating a connection between subsurface waters off Tasmania (origin of the Flinders Current) and the tropical Indian Ocean through the Flinders and Leeuwin Undercurrents.
|
2 |
Summer circulation and water masses along the West Australian coastWoo, Lai Mun January 2005 (has links)
The Gascoyne continental shelf is located along the north-central coastline of Western Australia between latitudes 21° and 28°S. This study presents CTD and ADCP data together with concurrent wind and satellite imagery, to provide a description of the summer surface circulation pattern along the continental margin, and the hydrography present in the upper 1km of ocean, between latitudes 21° and 35°S. It also discusses the outcome of a numerical modelling study that examined the physical factors contributing to a bifurcation event persistently observed in satellite imagery at Point Cloates. The region comprises a complex system of four surface water types and current systems. The Leeuwin Current dominated the surface flow, transporting lower salinity, warmer water poleward along the shelf-break, and causing downwelling. Its signature ‘aged’ from a warm (24.7°C), lower salinity (34.6) water in the north to a cooler (21.9°C), more saline (35.2) water in the south, as a result of 2-4Sv geostrophic inflow of offshore waters. The structure and strength of the current altered with changing bottom topographies. The Ningaloo Current flowed along the northernmost inner coast of the Gascoyne shelf, carrying upwelled water and re-circulated Leeuwin Current water from the south. Bifurcation of the Ningaloo Current was seen south of the coastal promontory at Point Cloates. Numerical modelling demonstrated a combination of southerly winds and coastal and bottom topography off Point Cloates to be responsible for the recirculation, and indicated that the strength of southerly winds affect recirculation. Hypersaline Shark Bay outflow influenced shelf waters at the Bay’s mouth and to the south of the Bay. The Capes Current, a wind-driven current from south of the study region was identified as a cooler, more saline water mass flowing northward. Results of the hydrography study show five different water masses present in the upper-ocean. Their orientations were affected by the geopotential gradient driven Leeuwin Current/Undercurrent system at the continental margin. The Leeuwin Undercurrent was found at the shelf-slope, carrying (>252 μM/L) Subantarctic Mode Water at a depth of 400m
|
Page generated in 0.5002 seconds