• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Power System State Estimation and Contingency Constrained Optimal Power Flow - A Numerically Robust Implementation

Pajic, Slobodan 01 May 2007 (has links)
The research conducted in this dissertation is divided into two main parts. The first part provides further improvements in power system state estimation and the second part implements Contingency Constrained Optimal Power Flow (CCOPF) in a stochastic multiple contingency framework. As a real-time application in modern power systems, the existing Newton-QR state estimation algorithms are too slow and too fragile numerically. This dissertation presents a new and more robust method that is based on trust region techniques. A faster method was found among the class of Krylov subspace iterative methods, a robust implementation of the conjugate gradient method, called the LSQR method. Both algorithms have been tested against the widely used Newton-QR state estimator on the standard IEEE test networks. The trust region method-based state estimator was found to be very reliable under severe conditions (bad data, topological and parameter errors). This enhanced reliability justifies the additional time and computational effort required for its execution. The numerical simulations indicate that the iterative Newton-LSQR method is competitive in robustness with classical direct Newton-QR. The gain in computational efficiency has not come at the cost of solution reliability. The second part of the dissertation combines Sequential Quadratic Programming (SQP)-based CCOPF with Monte Carlo importance sampling to estimate the operating cost of multiple contingencies. We also developed an LP-based formulation for the CCOPF that can efficiently calculate Locational Marginal Prices (LMPs) under multiple contingencies. Based on Monte Carlo importance sampling idea, the proposed algorithm can stochastically assess the impact of multiple contingencies on LMP-congestion prices.

Page generated in 0.1203 seconds