• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effects of the Machining Conditions on Polishing Mechanism of Silicon Wafer for the Continuous Composite Electroplated Polisher

Yang, Sheng-Shiu 28 July 2004 (has links)
In the study, the effects of the machining conditions, ex, machining positions, loads and rotating speed ratio on machining mechanism of wafer are investigated by using the continuous composite electroplated polisher and find the best machining conditions of the polisher. Experimental results show that when the wafer and polisher are full contact, the operating of machinery is most smooth and the flatness is better. When the load is increased, the reducing rate of average roughness¡]Ra¡^and maximum roughness¡]Rmax¡^, removal rate, and the speed of mirror degree are increased. The machining mechanism and the stability of machinery is depended on the value of rotating speed ratio. In the different rotating speed ratio, the flatness of wafer is difference. For example, the rotating speed ratio is 1, the flatness is 1.5 £gm/38 mm. The rotating speed ratio is 2, the flatness is 2.3 £gm/38 mm. Finally, choose the rotating speed ratio, which the values of rotating speed are close and complex on the range of rotating speed which machinery can be operating most stable in machining process. Because of the machining mechanism are similar and the grinding locus are finer. Hence, the flatness of wafer becomes better. When the rotating speed ratio is 1.1, the flatness is 1.46£gm/38 mm. The rotating speed ratio is 1.11, the flatness is 1.45£gm/38 mm. The effect of the rotating speed ratio of the wafer and polisher on the grinding locus type of grinding surface is theoretically analyzed. Results show that when the rotating speed ratio is irregular, the distribution of grinding locus becomes finer. The analyzable results of locus and provable results of experiment are the same.

Page generated in 0.1067 seconds