• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Otimização volumétrica de gemas de cor utilizadas para lapidação / Volumetric optimization for colored gemstone cutting

Silva, Victor Billy da January 2013 (has links)
O Problema do Lapidário tem como objetivo encontrar o modelo de lapidação que resulte no maior aproveitamento volumétrico para uma dada gema bruta. Nesta dissertação apresentamos um Algoritmo Genético com variáveis de valores reais, e um GRASP Contínuo como heurísticas para resolução deste problema. Ambos os algoritmos maximizam o fator de escala do modelo de lapidação, sobre todas as posições de centro e ângulos de giro que o modelo pode assumir, buscando encontrar o modelo de maior volume inscrito no interior da gema, representada virtualmente por uma malha triangular. Propomos também um algoritmo de avaliação de uma instância do problema, o qual determina eficientemente o maior fator de escala, para um dado centro e orientação, que o modelo de lapidação pode assumir permanecendo completamente no interior da gema. Os algoritmos propostos foram avaliados em um conjunto de 50 gemas reais para o problema, utilizando como modelos base os cortes redondo e oval. Por fim, comparamos os resultados computacionais obtidos em relação a aproveitamento volumétrico e tempo de execução com os principais trabalhos relatados na literatura, demonstrando que as heurísticas propostas são competitivas com as demais abordagens. / The goal of the gemstone cutting problem is to find the largest cutting design which fits inside a given rough gemstone. In this work, we propose a real-valued Genetic Algorithm and a Continuous GRASP heuristic to solve it. The algorithms determine the largest scaling factor, over all possibilities of centers and orientations which the cutting could assume, finding the cutting with the largest volume as possible inside a gemstone, represented by a triangular mesh. We also propose an algorithm to evaluate a problem instance. This method efficiently determines the greatest scaling factor, for a given center and orientation, such that the cutting fits inside the rough gemstone. The proposed algorithms are validated for an instance set of 50 real-world gemstones, using the round and oval cuttings. Finally, we compare our computational results, for volume yield and running time, with the state-of-art. Ours methods are proved be competitive with the previous approachs.
2

Otimização volumétrica de gemas de cor utilizadas para lapidação / Volumetric optimization for colored gemstone cutting

Silva, Victor Billy da January 2013 (has links)
O Problema do Lapidário tem como objetivo encontrar o modelo de lapidação que resulte no maior aproveitamento volumétrico para uma dada gema bruta. Nesta dissertação apresentamos um Algoritmo Genético com variáveis de valores reais, e um GRASP Contínuo como heurísticas para resolução deste problema. Ambos os algoritmos maximizam o fator de escala do modelo de lapidação, sobre todas as posições de centro e ângulos de giro que o modelo pode assumir, buscando encontrar o modelo de maior volume inscrito no interior da gema, representada virtualmente por uma malha triangular. Propomos também um algoritmo de avaliação de uma instância do problema, o qual determina eficientemente o maior fator de escala, para um dado centro e orientação, que o modelo de lapidação pode assumir permanecendo completamente no interior da gema. Os algoritmos propostos foram avaliados em um conjunto de 50 gemas reais para o problema, utilizando como modelos base os cortes redondo e oval. Por fim, comparamos os resultados computacionais obtidos em relação a aproveitamento volumétrico e tempo de execução com os principais trabalhos relatados na literatura, demonstrando que as heurísticas propostas são competitivas com as demais abordagens. / The goal of the gemstone cutting problem is to find the largest cutting design which fits inside a given rough gemstone. In this work, we propose a real-valued Genetic Algorithm and a Continuous GRASP heuristic to solve it. The algorithms determine the largest scaling factor, over all possibilities of centers and orientations which the cutting could assume, finding the cutting with the largest volume as possible inside a gemstone, represented by a triangular mesh. We also propose an algorithm to evaluate a problem instance. This method efficiently determines the greatest scaling factor, for a given center and orientation, such that the cutting fits inside the rough gemstone. The proposed algorithms are validated for an instance set of 50 real-world gemstones, using the round and oval cuttings. Finally, we compare our computational results, for volume yield and running time, with the state-of-art. Ours methods are proved be competitive with the previous approachs.
3

Otimização volumétrica de gemas de cor utilizadas para lapidação / Volumetric optimization for colored gemstone cutting

Silva, Victor Billy da January 2013 (has links)
O Problema do Lapidário tem como objetivo encontrar o modelo de lapidação que resulte no maior aproveitamento volumétrico para uma dada gema bruta. Nesta dissertação apresentamos um Algoritmo Genético com variáveis de valores reais, e um GRASP Contínuo como heurísticas para resolução deste problema. Ambos os algoritmos maximizam o fator de escala do modelo de lapidação, sobre todas as posições de centro e ângulos de giro que o modelo pode assumir, buscando encontrar o modelo de maior volume inscrito no interior da gema, representada virtualmente por uma malha triangular. Propomos também um algoritmo de avaliação de uma instância do problema, o qual determina eficientemente o maior fator de escala, para um dado centro e orientação, que o modelo de lapidação pode assumir permanecendo completamente no interior da gema. Os algoritmos propostos foram avaliados em um conjunto de 50 gemas reais para o problema, utilizando como modelos base os cortes redondo e oval. Por fim, comparamos os resultados computacionais obtidos em relação a aproveitamento volumétrico e tempo de execução com os principais trabalhos relatados na literatura, demonstrando que as heurísticas propostas são competitivas com as demais abordagens. / The goal of the gemstone cutting problem is to find the largest cutting design which fits inside a given rough gemstone. In this work, we propose a real-valued Genetic Algorithm and a Continuous GRASP heuristic to solve it. The algorithms determine the largest scaling factor, over all possibilities of centers and orientations which the cutting could assume, finding the cutting with the largest volume as possible inside a gemstone, represented by a triangular mesh. We also propose an algorithm to evaluate a problem instance. This method efficiently determines the greatest scaling factor, for a given center and orientation, such that the cutting fits inside the rough gemstone. The proposed algorithms are validated for an instance set of 50 real-world gemstones, using the round and oval cuttings. Finally, we compare our computational results, for volume yield and running time, with the state-of-art. Ours methods are proved be competitive with the previous approachs.
4

Novas Abordagens Sequencial e Paralela da meta-heurística C-GRASP Aplicadas à Otimização Global Contínua

Andrade, Lisieux Marie Marinho dos Santos 08 August 2013 (has links)
Made available in DSpace on 2015-05-14T12:36:40Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 2336902 bytes, checksum: 41580878008a0f84da693637a48ceb33 (MD5) Previous issue date: 2013-08-08 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The present work deals with the Continuous Global Optimization Problem, in its minimization form, by testing two approaches for the Continuous Greedy Randomized Adaptive Search Procedure (C-GRASP). The development of the first method - sequential and hybrid - comes from the deficiency of current approaches to provide a good neighborhood space exploration. Being constructed from the combination of two meta-heuristics, standard C-GRASP and Continuous General Variable Neighborhood Search (C-GVNS), as a strategy to achieving symmetric trades of neighborhood structures, it performed efficiently in the computational tests that were taken. The second procedure arises from the large consume of time when using high dimension functions with the standard C-GRASP construction procedure. As the optimization problems have a high dimensionality increase, it s preferable to have two parallel versions of the optimization method in order to handle bigger problems. Thus, for this new procedure developed, it was used the Compute Unified Device Architecture (CUDA), which provided promising acceleration regarding the processing time, based on the experiments performed. / O presente trabalho aborda o Problema de Otimização Global Contínua, em sua forma de minimização, através de duas abordagens para o procedimento Continuous Greedy Randomized Adaptive Search Procedure (C-GRASP). A elaboração do primeiro método, sequencial e híbrido, parte da deficiência presente nas abordagens atuais, em promover boa exploração no espaço de vizinhança. Sendo constituída da combinação de duas meta-heurísticas, C-GRASP padrão e Continuous General Variable Neighborhood Search (C-GVNS). Como estratégia para a realização de trocas sistemática de estruturas de vizinhanças, mostrou-se eficiente aos testes computacionais realizados. O segundo procedimento elaborado parte do grande consumo de tempo ao utilizar funções com alta dimensão, pelo procedimento de construção do método C-GRASP padrão. Como os problemas de otimização possuem crescimento elevado de dimensionalidade, é desejável ter versões paralelas do método de otimização para lidar com os problemas maiores. Desta forma, para o novo procedimento elaborado foi empregado a plataforma de computação paralela Compute Unified Device Architecture (CUDA), que, conforme verificado nos experimentos realizados, promoveu promissora aceleração quanto ao tempo de processamento.

Page generated in 0.1167 seconds