• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudo da transformação durante o resfriamento continuo e da microestrutura do aço microligado X80 utilizado na construção de tubos para transporte de gás natural e petróleo. / Study of the transformation during the continuous cooling and the microstructure of microalloyed steel X80 used in the building of pipelines for gas and oil transport.

Gonzalez Ramírez, Mario Fernando 16 June 2008 (has links)
O crescente consumo de energia produzida a partir do petróleo e do gás natural conduz a melhoria das propriedades mecânicas dos aços microligados empregados na construção dos oleodutos e gasodutos para incrementar o transporte dos recursos a menores custos e elevar a confiabilidade. O aumento do controle das diferentes fases, agregados eutetóides, microconstituintes e precipitados neste tipo de aço, garante a melhoria na resistência mecânica, tenacidade e soldabilidade. Dentro deste contexto foi realizado um trabalho de caracterização microestrutural do aço um microligado para tubos API 5L X80 em amostras de aço como recebido e em diferentes condições de resfriamento. Para o estudo da cinética das transformações de fase, o aço microligado foi submetido a ensaios de dilatometria onde foram identificadas as temperaturas e tempos de início e fim de transformação de fases, para varias velocidades de resfriamento. A partir das diferentes temperaturas e tempos obtidos, em função das taxas de resfriamento, foi possível extrair a curva de Transformação por Resfriamento Continuo (TRC). Os dados da curva TRC foram comparados com as microestruturas de cada corpo de prova por meio de microscopia óptica (MO), microscopia eletrônica de varredura (MEV), microscopia eletrônica de varredura com Field Emission Gun (FEG) e microdureza, caracterizando a evolução morfológica da matriz ferrítica, agregados eutetóides e microconstituinte austenita/martensita (MA). Para a caracterização microestrutural das amostras também foram utilizadas técnicas de análise microestrutural como, nanodureza, análise por difração de raios X em amostras obtidas por extração de precipitados, saturação magnética e microscopia de força atômica (AFM). A técnica de saturação magnética foi desenvolvida por médio de curvas de histerese medidas em um histeresígrafo com peças polares e anel de Rowland para diversas amplitudes de intensidade de campo magnético. Esta técnica permitiu a detecção da saturação magnética do aço sem tratamento térmico e a saturação máxima nos aços com tratamento térmico, o que indicou a total transformação da austenita retida. A relação das duas saturações permitiu determinar a fração de austenita retida no MA. Para as medidas de nanodureza foi utilizado um nanodurômetro acoplado ao microscópio de força atômica (AFM). As nanodurezas obtidas em diferentes grãos foram comparadas com os valores constantes na literatura para identificar as fases, agregados eutetóides e possíveis precipitados da microestrutura. / The continuous increase of energy generated from petroleum and natural gas created the need to improve the mechanical properties of microalloyed steels used in gas and oil pipelines, in order to increase their flow with smaller costs and higher reliability. The control of the different phases, morphology of microconstituents like ferrite plus carbide aggregates and precipitates in this kind of steels is essential to the improvement of mechanical strength, toughness and weldability. In this context, a work of microestrutural characterization of a microalloyed steel for API X80 pipelines was carried out both on an as-received steel sample as in samples submitted to different cooling conditions. The kinetics of austenite transformations was investigated using dilatometric experiments, identifying start and end of the phase transformations as well as the time spent temperatures for the phase transformations at each cooling rate. The temperature and time curves obtained as a function of the cooling rates allowed the determination of a Continuous Cooling Transformation curve (CCT). The data from the CCT curve was compared with the microstructures of each sample through optical microscopy (OM), scanning electron microscopy (SEM), scanning electron microscopy with Field Emission Gun (FEG) and microhardness, characterizing the morphologic evolution of the ferritic matrix, ferrite plus carbide eutectoid aggregates (perlite and bainite) and the microconstituent martensite/austenite (MA). The microestrutural characterization of the samples was performed also using different techniques of microestrutural analysis: precipitate extraction followed by Xrays diffraction analysis, magnetic saturation and atomic force microscopy (AFM) measurements. The magnetic saturation technique was developed through hysteresis curves measured with a hysteresigraph with polar pieces and Rowland ring for several ranges of magnetic field intensity. This technique allowed to detect the magnetic saturation of the steel without thermal treatment and the maximum saturation in the heat treated steels were the retained austenite has transformed. The relationship between those saturations curves allowed a determination of the retained austenite fraction in the MA microconstituent. The nanohardness was measured using a specific device coupled to a atomic force microscope (AFM). The nanohardness of different grains were compared with the hardness values from the literature in order to help identify phases and microconstituents, as well as possible precipitates.
2

Estudo da transformação durante o resfriamento continuo e da microestrutura do aço microligado X80 utilizado na construção de tubos para transporte de gás natural e petróleo. / Study of the transformation during the continuous cooling and the microstructure of microalloyed steel X80 used in the building of pipelines for gas and oil transport.

Mario Fernando Gonzalez Ramírez 16 June 2008 (has links)
O crescente consumo de energia produzida a partir do petróleo e do gás natural conduz a melhoria das propriedades mecânicas dos aços microligados empregados na construção dos oleodutos e gasodutos para incrementar o transporte dos recursos a menores custos e elevar a confiabilidade. O aumento do controle das diferentes fases, agregados eutetóides, microconstituintes e precipitados neste tipo de aço, garante a melhoria na resistência mecânica, tenacidade e soldabilidade. Dentro deste contexto foi realizado um trabalho de caracterização microestrutural do aço um microligado para tubos API 5L X80 em amostras de aço como recebido e em diferentes condições de resfriamento. Para o estudo da cinética das transformações de fase, o aço microligado foi submetido a ensaios de dilatometria onde foram identificadas as temperaturas e tempos de início e fim de transformação de fases, para varias velocidades de resfriamento. A partir das diferentes temperaturas e tempos obtidos, em função das taxas de resfriamento, foi possível extrair a curva de Transformação por Resfriamento Continuo (TRC). Os dados da curva TRC foram comparados com as microestruturas de cada corpo de prova por meio de microscopia óptica (MO), microscopia eletrônica de varredura (MEV), microscopia eletrônica de varredura com Field Emission Gun (FEG) e microdureza, caracterizando a evolução morfológica da matriz ferrítica, agregados eutetóides e microconstituinte austenita/martensita (MA). Para a caracterização microestrutural das amostras também foram utilizadas técnicas de análise microestrutural como, nanodureza, análise por difração de raios X em amostras obtidas por extração de precipitados, saturação magnética e microscopia de força atômica (AFM). A técnica de saturação magnética foi desenvolvida por médio de curvas de histerese medidas em um histeresígrafo com peças polares e anel de Rowland para diversas amplitudes de intensidade de campo magnético. Esta técnica permitiu a detecção da saturação magnética do aço sem tratamento térmico e a saturação máxima nos aços com tratamento térmico, o que indicou a total transformação da austenita retida. A relação das duas saturações permitiu determinar a fração de austenita retida no MA. Para as medidas de nanodureza foi utilizado um nanodurômetro acoplado ao microscópio de força atômica (AFM). As nanodurezas obtidas em diferentes grãos foram comparadas com os valores constantes na literatura para identificar as fases, agregados eutetóides e possíveis precipitados da microestrutura. / The continuous increase of energy generated from petroleum and natural gas created the need to improve the mechanical properties of microalloyed steels used in gas and oil pipelines, in order to increase their flow with smaller costs and higher reliability. The control of the different phases, morphology of microconstituents like ferrite plus carbide aggregates and precipitates in this kind of steels is essential to the improvement of mechanical strength, toughness and weldability. In this context, a work of microestrutural characterization of a microalloyed steel for API X80 pipelines was carried out both on an as-received steel sample as in samples submitted to different cooling conditions. The kinetics of austenite transformations was investigated using dilatometric experiments, identifying start and end of the phase transformations as well as the time spent temperatures for the phase transformations at each cooling rate. The temperature and time curves obtained as a function of the cooling rates allowed the determination of a Continuous Cooling Transformation curve (CCT). The data from the CCT curve was compared with the microstructures of each sample through optical microscopy (OM), scanning electron microscopy (SEM), scanning electron microscopy with Field Emission Gun (FEG) and microhardness, characterizing the morphologic evolution of the ferritic matrix, ferrite plus carbide eutectoid aggregates (perlite and bainite) and the microconstituent martensite/austenite (MA). The microestrutural characterization of the samples was performed also using different techniques of microestrutural analysis: precipitate extraction followed by Xrays diffraction analysis, magnetic saturation and atomic force microscopy (AFM) measurements. The magnetic saturation technique was developed through hysteresis curves measured with a hysteresigraph with polar pieces and Rowland ring for several ranges of magnetic field intensity. This technique allowed to detect the magnetic saturation of the steel without thermal treatment and the maximum saturation in the heat treated steels were the retained austenite has transformed. The relationship between those saturations curves allowed a determination of the retained austenite fraction in the MA microconstituent. The nanohardness was measured using a specific device coupled to a atomic force microscope (AFM). The nanohardness of different grains were compared with the hardness values from the literature in order to help identify phases and microconstituents, as well as possible precipitates.
3

Microstructure and Inclusion Characteristics in Steels with Ti-oxide and TiN Additions

Mu, Wangzhong January 2015 (has links)
Non-metallic inclusions in steels are generally considered to be detrimental for mechanical properties. However, it has been recognized that certain inclusions, such as Ti-oxide and TiN, can serve as potent nucleation sites for the formation of intragranular ferrite (IGF) in low-alloy steels. The formation of IGF could improve the toughness of the coarse grained heat affected zone (CGHAZ) of weld metals. Thus, the present thesis mainly focuses on the effect of size of nucleation sites on the IGF formation. Quantitative studies on the composition, size distribution and nucleation probability for each size of the inclusions as well as the area fraction, starting temperature and morphology of an IGF have been carried out. In the present work, the Ti-oxide and TiN powders were mixed with metallic powders. The mixed powders were heated up to the liquid state and cooled with a slow cooling rate of 3.6 ºC/min. These as-cast steels with Ti-oxide and TiN additions were used to simulate the IGF formation in the CGHAZ of weld metals. Specifically, the inclusion and microstructure characteristics in as-cast steels have been investigated. The results show that the nucleant inclusion was identified as a TiOx+MnS phase in steels with Ti2O3 additions and as a TiN+Mn-Al-Si-Ti-O+MnS phase in steels with TiN additions. In addition, the TiOx and TiN phases are detected to be the effective nucleation sites for IGF formation. It is clearly shown that an increased inclusion size leads to an increased probability of IGF nucleation. This probability of IGF nucleation for each inclusion size of the TiOx+MnS inclusions is clearly higher than that of the complex TiN+Mn-Al-Si-Ti-O+MnS inclusions. In addition, the area fraction of IGF in the steels with Ti2O3 additions is larger than that of the steels with TiN additions. This result agrees with the predicted tendency of the probability of IGF nucleation for each inclusion size in the steels with Ti2O3 and TiN additions. In order to predict the effective inclusion size for IGF formation, the critical diameters of the TiO, TiN and VN inclusions, which acted as the nucleation sites of IGF formation, were also calculated based on the classical nucleation theory. The critical diameters of TiO, TiN and VN inclusions for IGF formation were found to be 0.192, 0.355 and 0.810 μm in the present steels. The calculation results were found to be in agreement with the experiment data of an effective inclusion size. Moreover, the effects of the S, Mn and C contents on the critical diameters of inclusions were also calculated. It was found that the critical diameter of the TiO, TiN and VN inclusions increases with an increased content of Mn or C. However, the S content doesn’t have a direct effect on the critical diameter of the inclusions for IGF formation. The probability of IGF nucleation for each inclusion size slightly decreases in the steel containing a higher S content. This fact is due to that an increased amount of MnS precipitation covers the nucleant inclusion surface. In the as-cast experiment, it was noted that an IGF can be formed in steels with Ti2O3 and TiN additions with a cooling rate of 3.6 ºC/min. In order to control the microstructure characteristics, such as the area fraction and the morphology of an IGF, and to investigate the starting temperature of IGF and grain boundary ferrite (GBF) formation, the dynamic transformation behavior of IGF and GBF was studied in-situ by a high temperature confocal laser scanning microscope (CLSM). Furthermore, the chemical compositions of the inclusions and the morphology of IGF after the in-situ observations were investigated by using scanning electron microscopy (SEM), electron backscatter diffraction (EBSD) and electron probe microanalysis (EPMA) which equipped wavelength dispersive spectrometer (WDS). The results show that the area fraction of IGF is larger in the steels with Ti2O3 additions compared to the steels with TiN additions, after the same thermal cycle has been imposed. This is due to that the TiOx phase provides more potent nucleation sites for IGF than the TiN phase does. Also, the area fraction of IGF in the steels is highest after at an intermediate cooling rate of 70 ºC/min, since the competing phase transformations are avoided. This fact has been detected by using a hybrid methodology in combination with CLSM and differential scanning calorimetry (DSC). In addition, it is noted that the morphology of an IGF is refined with an increased cooling rate. / <p>QC 20150325</p>

Page generated in 0.1224 seconds