Spelling suggestions: "subject:"contour error"" "subject:"montour error""
1 |
Design and Implementation of Cross-Coupled Control on High Speed Tracking ControlChen, Ming-Chi 13 August 2001 (has links)
As the electronic products are gotten smaller and the quantity of output is to be requested, the trend of the needs for speed and accuracy is more precise. Therefore, upgrading the speed and the accuracy of contour error on tracking control has become an important point.
This research is focus on the improvement of tracking error and contour error. In tracking error, we propose that the compensation of friction disturbance is by building friction model. And then adaptive robust controller is used to eliminate other disturbance. Finally, velocity feedforward controller is used to improve system dynamic response and to remove the effect of time delay. The combination of such controllers can improve tracking error directly and contour error indirectly. In contour error, we use cross-coupled controller to coordinate the motors and to reform contour error. On the association of such controllers, we propose the design method of cross-coupled controller, to replace the traditional way of try-and-error, and improving contour error again.
Finally, the above improving strategies are verified by the simulation and experimental results.
|
2 |
Commande à gains variables de l’erreur de contour pour l’usinage multiaxes / Variable gain contouring control for multi-axis machine toolsDuong, Tan Quang 12 March 2018 (has links)
Les techniques d’usinage avancées sont un élément indispensable du développement des industries manufacturières. L’une de ces techniques, l’usinage à grande vitesse, constitue le sujet principal de cette thèse de doctorat. Ainsi, l’objectif majeur des travaux vise à améliorer la précision de contour dans le contexte de l’usinage multiaxes à grande vitesse de surfaces de forme libre, en agissant directement au niveau des boucles de commande d’axe. Pour cela, une première étape consiste à élaborer une stratégie permettant d’estimer le plus précisément possible l’erreur de contour pour différentes configurations de l’outil. Cette erreur de contour est ensuite minimisée grâce à l’adaptation hors ligne, pour un profil de pièce donné, des gains proportionnel et d’anticipation des régulateurs des boucles d’asservissement de la position de chaque axe. L’adaptation de ces gains est réalisée via un algorithme d’optimisation à l’aide d’un modèle non-linéaire du comportement de la machine, en considérant en particulier les frottements sur chacun des axes. L’optimisation permettant d’obtenir les gains des correcteurs des boucles de régulation tient compte des contraintes en termes de limitations cinématiques des axes (vitesse, accélération et jerk), de stabilité des boucles d’asservissement et de limites au niveau des courants des moteurs. Afin d’en faciliter la mise en oeuvre dans un cadre industriel, les stratégies développées s’avèrent directement implantables au sein des commandes numériques actuellement sur le marché, exploitant toutes les possibilités de la structure de commande classique de l’entraînement d’axe. / The advanced machining techniques are always the backbone of the manufacturing industries. Among such techniques, high speed machining is the main subject of this PhD thesis. Indeed, the main objective of this work is to improve the contouring accuracy in multi-axis high speed machining of free-form surfaces, directly acting inside the axis control loops. To do that, a first step aims at elaborating a strategy to estimate as accurately as possible the contour error for different tool configurations. This contour error is then minimized by means of an off-line adaptation for a given profile of the proportional and feedforward gains of the axis position loop controllers. This gain adaptation is performed via an optimization algorithm that considers a nonlinear model of the machine behaviour, in particular including friction related to each axis. This optimization leading to the controllers gains takes into account several constraints, including the axis kinematic (velocity, acceleration and jerk) limitations, the stability of the controlled loops and the motor current limits. Finally, to help their integration within an industrial framework, the developed strategies can be directly implemented in commercial CNC, by exploiting all possibilities of the classical control structure of axis drive.
|
Page generated in 0.3789 seconds